Charm Mixing and CPV at LHCb

Adam Davis
On behalf of the LHCb Collaboration

August 15, 2013

A. Davis

Outline

Charm System
LHCb

$$
D^{0}-\bar{D}^{0} \text { Mixing }
$$

$$
D^{+} \rightarrow \phi \pi^{+} \& D_{s}^{+} \rightarrow K_{S}^{0} \pi^{+}
$$

$$
D^{0} \rightarrow K^{-} K^{+} \pi^{+} \pi^{-} \& \rightarrow \pi^{-} \pi^{+} \pi^{+} \pi^{-}
$$

Summary

Mixing in a Nutshell

- Mixing in Neutral Mesons: mass $=$ flavor eigenstates
- Mixing Hamiltonian: $H=\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma}$
- Mass Eigenstates:

$$
\begin{aligned}
& \left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle \\
& |p|^{2}+|q|^{2}=1
\end{aligned}
$$

$$
x=\frac{m_{2}-m_{1}}{\Gamma} \quad y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}, \Gamma=\frac{\Gamma_{1}+\Gamma_{2}}{2}
$$

3 Types of CPV

Direct CPV (Charged and Neutral)

$$
\begin{aligned}
& \mathcal{A}_{f}=\langle f| \mathcal{H}|D\rangle, \overline{\mathcal{A}}_{\bar{f}}=\langle\bar{f}| \mathcal{H}|\bar{D}\rangle \\
& \left|\left|\frac{\overline{\mathcal{A}}_{\bar{f}}}{\mathcal{A}_{f}}\right| \neq 1\right.
\end{aligned}
$$

CPV in Mixing (Neutral)

$$
\begin{aligned}
& \phi=\arg \left(\frac{q}{p}\right) \neq 0 \text { (weak phase) } \\
& \text { or }\left|\frac{q}{p}\right| \neq 1
\end{aligned}
$$

CPV in Interference (Neutral)

$$
\arg \left(\frac{q}{p} \frac{\overline{\mathcal{A}}_{f}}{\mathcal{A}_{f}}\right) \neq 0
$$

- Only up-type quark system with mixing/CPV

Short Range

 W
Long Range

- Mixing enters at 1 loop level in SM, GIM and CKM suppressed
- Non-perturbative long-range effects may dominate short-range interactions, difficult to calculate
- x, y expected to be small in short and long range limits, CPV expected to be $\mathcal{O}\left(10^{-3}\right)$ in SM
- If enhancement of CPV is seen, could be caused by New Physics (NP)

The Detector

- $\sigma(c \bar{c})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $1419 \pm 133 \mu b$

Nucl.Phys.B 871(2013), 1

- $\sigma(b \bar{b})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $75.3 \pm 14.1 \mu b$

Phys. Lett. B 694 (2010), 209

- $\sim 350 \mathrm{M}$ reconstructed charm decays in 2011! (LHCb-TALK-2012-078)

The Detector

- $\sigma(c \bar{c})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $1419 \pm 133 \mu b$

Nucl.Phys.B 871(2013), 1

- $\sigma(b \bar{b})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $75.3 \pm 14.1 \mu b$

Phys. Lett. B 694 (2010), 209

- ~350M reconstructed charm decays in 2011! (LHCb-TALK-2012-078)

The Detector

- $\sigma(c \bar{c})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $1419 \pm 133 \mu b$

Nucl.Phys.B 871(2013), 1

- $\sigma(b \bar{b})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $75.3 \pm 14.1 \mu b$

Phys. Lett. B 694 (2010), 209

- $\sim 350 \mathrm{M}$ reconstructed charm decays in 2011! (LHCb-TALK-2012-078)

The Detector

- $\sigma(c \bar{c})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $1419 \pm 133 \mu b$

Nucl.Phys.B 871(2013), 1

- $\sigma(b \bar{b})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $75.3 \pm 14.1 \mu b$

Phys. Lett. B 694 (2010), 209

- $\sim 350 \mathrm{M}$ reconstructed charm decays in 2011! (LHCb-TALK-2012-078)

The Detector

A. Davis

- Use Decay $D^{*+} \rightarrow D^{0} \pi_{s}^{+}$(+c.c.), use π_{s} to tag D^{0} flavor
- $D^{0} \rightarrow K^{-} \pi^{+}$(Right Sign)
- $D^{0} \rightarrow K^{+} \pi^{-}$(Wrong Sign)

A. Davis

$$
D^{0}-\bar{D}^{0} \text { Mixing }
$$

$$
\begin{gathered}
R(t)=\frac{N(W S(t))}{N(R S(t))} \approx R_{D}+\sqrt{R_{D}} y^{\prime} \Gamma t+\frac{x^{\prime 2}+y^{\prime 2}}{4}(\Gamma t)^{2} \\
x^{\prime}=x \cos \delta+y \sin \delta, y^{\prime}=y \cos \delta-x \sin \delta
\end{gathered}
$$

No mixing excluded at 9.1σ

A. Davis

JHEP06(2013)112

CPV in $D^{+} \rightarrow \phi \pi^{+}$and $D_{s}^{+} \rightarrow K_{S}^{0} \pi^{+}$

- Interference between

Cabibbo-suppressed tree level and penguin amplitudes

- $A_{C P}\left(D^{+} \rightarrow K_{S}^{0} \pi^{+}\right) \approx 0.01 \%$ and no penguins \rightarrow assume no CPV

$$
\left.\begin{array}{l}
A_{C P}\left(D^{+} \rightarrow \phi \pi^{+}\right)=A_{\text {raw }}\left(D^{+} \rightarrow \phi \pi^{+}\right)-A_{\text {raw }}\left(D^{+} \rightarrow K_{S}^{0} \pi^{+}\right)+A_{C P}\left(K^{0} / \bar{K}^{0}\right) \\
A_{C P}\left(D_{s}^{+} \rightarrow K_{S}^{0} \pi^{+}\right)=A_{\text {raw }}\left(D_{s}^{+} \rightarrow K_{S}^{0} \pi^{+}\right)-A_{\text {raw }}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)+A_{C P}\left(K_{D^{+}} / K_{D^{-}}^{0}\right) \\
\text { Phys Lett.B718(2013)902 }
\end{array}\right)
$$

JHEP06(2013)112

- Fit invariant mass distributions to
- Strong phase varies rapidly across
extract signal events
 ϕ resonance in Dalitz plot, could cancel $A_{C P}$
- Define observable which doesn't vary across Dalitz plot
$A_{C P \mid S} \equiv \frac{1}{2}\left(A_{C P}^{A}+A_{C P}^{C}-A_{C P}^{B}-A_{C P}^{D}\right)$

$$
A_{C P \mid S}=(-0.18 \pm 0.17 \pm 0.18) \%
$$

$D^{0} \rightarrow K^{-} K^{+} \pi^{+} \pi^{-} \& D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{+} \pi^{-}$

- 4-body decay: many resonances
- $K K \pi \pi: D^{0} \rightarrow \phi \rho, K_{1}(1270)^{ \pm} K^{\mp}, K^{*}(1410)^{ \pm} K^{\mp}$, etc
- $4 \pi: D^{0} \rightarrow \rho \rho, a_{1}(1260)^{+} \pi^{-}$, etc
- Tree-level and penguin SCS amplitudes
- Look for Direct CPV in regions of 4-body phase space $\rightarrow 5$ combinations of 2 - and 3-body invariant mass squared
- $D^{0} \rightarrow(1,2,3,4): s(1,2), s(2,3), s(3,4), s(1,2,3), s(2,3,4)$
- Identical particles assigned randomly
- No Direct CPV in $D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-} \rightarrow$ use as control channel

Analysis Strategy

- Signal extraction via ${ }_{s} \mathcal{P}$ lot technique
- Fit $(m, \Delta m)$ plane to extract ${ }_{s} \mathcal{W}$ eights $\left(m(4 h), \Delta m \equiv m\left(4 h \pi_{s}\right)-m(4 h)\right)$
- Significance in equally populated bins of 5D phase space

$$
S_{C P}^{i}=\frac{N_{i}\left(D^{0}\right)-\alpha N_{i}\left(\bar{D}^{0}\right)}{\sqrt{\alpha\left(\sigma_{i}^{2}\left(D^{0}\right)+\sigma_{i}^{2}\left(\bar{D}^{0}\right)\right)}}, \alpha=\frac{\sum_{i} N_{i}\left(D^{0}\right)}{\sum_{i} N_{i}\left(\bar{D}^{0}\right)}
$$

- No CPV = Gaussian distribution
$D^{0} \rightarrow K^{-} K^{+} \pi^{+} \pi^{-}$

330k Signal
$D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$

2.9M Signal
A. Davis

Results

LHCb Preliminary Results		
Bins	χ^{2} / ndf	p-value(\%)
64	$68.8 / 63$	28.8
128	$130.0 / 127$	41.0
256	$247.7 / 255$	61.7

Consistent with no CPV
$D^{0} \rightarrow K^{-} K^{+} \pi^{+} \pi^{-}$

LHCb Preliminary Results		
Bins	$\chi^{2} /$ ndf	p-value(\%)
16	$22.7 / 15$	9.1
32	$42.0 / 31$	9.1
64	$75.7 / 63$	13.1

Consistent with no CPV
$D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$

LHCb Preliminary Results

Bins	$\chi^{2} /$ ndf	$p-$ value(\%)
16	$16.5 / 15$	34.8
128	$113.4 / 127$	80.0
1024	$1057.5 / 1023$	22.1

No evidence for local asymmetries

A. Davis

Summary

- With $1 \mathrm{fb}^{-1}$ of 2011 LHCb data:
- $D^{0}-\bar{D}^{0}$ mixing verified (9.1σ)
- CPV constrained in $D^{+} \rightarrow \phi \pi^{+}$and $D_{s}^{+} \rightarrow K_{S}^{0} \pi^{+}$
- No evidence for CPV in 5D phase space of $D^{0} \rightarrow K^{-} K^{+} \pi^{+} \pi^{-}$ or $D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{+} \pi^{-}$
- $2 \mathrm{fb}^{-1}$ of 2012 data are currently being analyzed.
- Stay tuned for much more soon!

