

Studies of the electroweak penguin transitions and radiative decays at LHCb

Espen Eie Bowen On behalf of the LHCb collaboration

DPF Santa Cruz – August 2013

Overview

- Flavour changing neutral current (FCNC) decays can only proceed via loopdiagrams in the SM
- New Physics can enter at the same level as SM physics

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} \left(\bar{s}\sigma^{\mu\nu}P_{R}b\right)F_{\mu\nu}$$
$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}}(\bar{s}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\ell)$$
$$\mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}}(\bar{s}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

Operators in SM

B°->K*(->K+π)μμ

- B°->K*µµ is a FCNC process mediated by penguin and W-box diagrams in the SM
- Its angular distribution is described by three angles (θ₁, θ_k, φ) and the dimuon invariant mass squared (q²)
- Observables F_L and S_i are functions of the Wilson coefficients and form-factors

$$\frac{1}{\Gamma} \frac{\mathrm{d}^{3}(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^{2}\theta_{K} + F_{\mathrm{L}} \cos^{2}\theta_{K} + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^{2}\theta_{K} \cos 2\theta_{\ell} \right]$$
$$- F_{\mathrm{L}} \cos^{2}\theta_{K} \cos 2\theta_{\ell} + S_{3} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \cos 2\phi$$
$$+ S_{4} \sin 2\theta_{K} \sin 2\theta_{\ell} \cos \phi + S_{5} \sin 2\theta_{K} \sin \theta_{\ell} \cos \phi$$
$$+ S_{6} \sin^{2}\theta_{K} \cos \theta_{\ell} + S_{7} \sin 2\theta_{K} \sin \theta_{\ell} \sin \phi$$
$$+ S_{8} \sin 2\theta_{K} \sin 2\theta_{\ell} \sin \phi + S_{9} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \sin 2\phi$$

Folding

• Performing the folding $\phi \rightarrow \phi + \pi (\phi < 0)$ leads to:

$$\begin{aligned} \overline{\mathrm{d}\hat{\phi}} &= \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K \\ &+ \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_\ell - F_{\mathrm{L}} \cos^2 \theta_K \cos 2\theta_\ell \\ &+ S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\hat{\phi} + \frac{4}{3} A_{FB} \sin^2 \theta_K \cos \theta_\ell \\ &+ 2\theta_K \sin 2\theta_\ell \sin \hat{\phi} + A_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\hat{\phi} \right] \end{aligned}$$

 Theoretically cleaner observables (reduced form-factor uncertainties) can be calculated from existing ones

$$A_T^{\text{Re}} = \frac{\frac{4}{3}A_{\text{FB}}}{(1 - F_{\text{L}})} A_T^2 = \frac{2S_3}{(1 - F_{\text{L}})}$$

Candidate selection

LHCb

- Candidates selected using a BDT
- (Tree-level) Charmonium resonances vetoed
- Exclusive and partially reconstructed background investigated and reduced to negligible level

Candidate selection

- Data/MC agreement calibrated using control modes e.g. B°->J/ΨK^{*}, D^{*}->D(->Kπ)π_s
- Acceptance correction accounted for by weighting candidates with inverse of efficiency determined from simulation
- Total yield of 883 ± 34 signal candidates
- Analysis performed in 6 bins of $q^2 (m_{\mu\mu}^2)$ and theoretically clean 1<q²<6 GeV²/c⁴

arXiv:1304.6325 (1fb⁻¹)

Results

- Results accord with the SM predictions (Bobeth et al., JHEP 01 (2012) 107)
- First measurement of the zero-crossing point of A_{FB} (error is stat+sys) (SM predictions in range 3.9-4.4 GeV²/c⁴)

Results

Consistent with SM predictions
 (Bobeth et al., JHEP 01 (2012) 107)

New observables

In low q² limit, observables denoted as P₄', P₅', P₆', P₈' are predicted to be largely free from form-factor uncertainties (J. Mathias et al., JHEP 05 (2013) 137)

Here a 2D folding is used, for example:

$$P'_5, S_5: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2 \end{cases}$$

 Each folding preserves the first 5 terms in the differential angular distribution and the corresponding S_i term

arXiv:1308.1707 (1fb⁻¹)

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_{\rm L}(1-F_{\rm L})}}$$

Results

arXiv:1308.1707 (1fb⁻¹)

Results

First measurement of new observables

- Local discrepancy of 3.7σ in 3rd bin of P₅' (wrt J. Mathias et al., JHEP 05 (2013) 137)
- 2.5σ discrepancy in theoretically clean
 1<q²<6 GeV²/c⁴ bin
- 0.5% probability to observe 3.7σ deviation in 24 independent measurements

Results

- 68.3% C.L 95.5% C.L 7% C I Includes Low Recoil data Descotes-Genon et al. (arXiv:1307.5683) Only [1,6] bins explain the discrepancy in P_5 ' and other ang S smaller deviations through a large New Physics contribution to the Wilson coefficient of the semileptonic operator O_{q} -0.15 - 0.10 - 0.05 0.000.05 0.10 0.15
 - Predictions for the first two bins and 1<q²<6 GeV²/c⁴ are also given by Jäger et al. (JHEP 05 (2013) 043)
 - Leads to a larger theoretical uncertainty wrt J. Mathias et al.
 - Measurements with higher statistics and further theoretical studies are necessary to draw more definitive conclusions

arXiv:1308.1707 (1fb⁻¹)

 $C_7^{\rm NP}$

JHEP 02 (2013) 105 (1fb⁻¹)

B+->K+μμ

- Differential angular distribution described by single angle θ_l
- A_{FB} and F_H consistent with SM prediction of zero

A_{CP} in $B^+ \rightarrow K^+\mu\mu$

$$\mathcal{A}_{CP} = \frac{\Gamma(B^- \to K^- \mu^+ \mu^-) - \Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^- \to K^- \mu^+ \mu^-) + \Gamma(B^+ \to K^+ \mu^+ \mu^-)} = -0.0004 \pm 0.033 \pm 0.005 \pm 0.007$$

- Control channel B⁺->J/ψK⁺ used to account for production and detection asymmetries
- Left-Right asymmetry accounted for by averaging magnet polarity
- Result consistent with SM prediction

arXiv:1307.7595 (1fb⁻¹)

New resonance at in B+->K+μμ at high q²

- Resonance compatible with the ψ(4160) meson
- Larger than theoretical estimates
- First observation of both B⁺-> ψ (4160)K⁺ and ψ (4160)-> $\mu^+\mu^-$
- Could complicate further b->sμ⁺μ⁻ measurements at high q²

arXiv:1305.2168 (1fb⁻¹)

$B_{s}^{o} \rightarrow \phi(\rightarrow K^{+}K^{-})\mu\mu$

- Branching fraction lower than SM theory predictions (blue dotted line)
- First angular analysis of B_s^o->φμ⁺μ⁻
- All observables are consistent with SM expectation

$Λ_b$ ->Λμμ

- Baryon decays more theoretically complex
- Yield of 78±12 Λ_b->Λμ⁺μ⁻ decays observed, mostly in q² regions above J/ψ mass
- $\Lambda_{\rm b}$ ->J/ ψ A normalization mode

- Limits set at low q²
- Good agreement with SM expectation

(Detmold et al., Phys.Rev. D87 (2013) 074502)

Radiative B decays

- b->sγ is a FCNC process
- In SM emitted photons in such decays are predicted to be predominately left handed since the recoil s quark that couples to the W boson if left handed

The photon polarization is defined as:

$$\lambda_{\gamma} \equiv \frac{|c_{\rm R}|^2 - |c_{\rm L}|^2}{|c_{\rm R}|^2 + |c_{\rm L}|^2}$$

LHCb-CONF-2013-017 (2fb⁻¹)

B->K_{res}γ->Kππγ

- For decays of the type B->K_{res}γ->Kππγ, the photon polarization can be studied through the angular correlations of the daughters of the K_{res}
- For a single resonance, A_{ud} is proportional to λ_{v}
- If the helicity amplitude J is known, λ_γ can be determined from a measurement of A_{ud}

$$\mathcal{A}_{\rm ud} \equiv \frac{\int_0^1 \operatorname{dcos} \tilde{\theta} \frac{\mathrm{d}\Gamma}{\mathrm{dcos}\,\tilde{\theta}} - \int_{-1}^0 \operatorname{dcos} \tilde{\theta} \frac{\mathrm{d}\Gamma}{\mathrm{dcos}\,\tilde{\theta}}}{\int_{-1}^1 \operatorname{dcos} \tilde{\theta} \frac{\mathrm{d}\Gamma}{\mathrm{dcos}\,\tilde{\theta}}} = \frac{3}{4} \lambda_\gamma \frac{\int \mathrm{d}s \,\mathrm{d}s_{13} \,\mathrm{d}s_{23} \mathrm{Im} \left[\vec{n} \cdot (\vec{\mathcal{J}} \times \vec{\mathcal{J}}^*) \right]}{\int \mathrm{d}s \,\mathrm{d}s_{13} \,\mathrm{d}s_{23} |\mathcal{J}|^2}$$

Theory input needed!

LHCb-CONF-2013-017 (2fb⁻¹)

B->K⁺π⁻π⁺γ

- Inclusive CP asymmetry measured for first time
- A_{CP} compatible with zero
- A_{ud} measured for the first time
- Result 4.5σ from zero
- Evidence of photon polarization in b->sγ decays
- If theoretical predictions existed, first measurement of λ_ν possible

 $\mathcal{A}_{CP} = -0.007 \pm 0.015 \,(ext{stat})^{+0.012}_{-0.011} \,(ext{syst}) \ \ \mathcal{A}_{ ext{ud}} = -0.085 \pm 0.019 \,(ext{stat}) \pm 0.004 \,(ext{syst})$

Summary

- LHCb has many recent precision measurements in electroweak penguin and radiative decay modes
 - New angular observables measured in B^o->K^{*}μμ
 - First measurement of zero crossing point of A_{FB} in B° ->K^{*}µµ
 - New resonance observed at high q² in B⁺->K⁺μμ
 - First angular analysis of $B_s^{o} \rightarrow \phi \mu \mu$
 - First measurements of A_{CP} and A_{ud} in B->K $\pi\pi\gamma$
- In general, there is good agreement between results and SM predictions except for a deviation in low q² region of P₅' in B⁰->K^{*}μμ
- Many results shown only using 1 fb⁻¹, updates with full 3 fb⁻¹ to follow!

Backup

Angles in B°->K*µµ

(a) θ_K and θ_ℓ definitions for the B^0 decay

A_{CP} in $B^{\circ} \rightarrow K^* \mu \mu$

 $-0.072 \pm 0.040 \text{ (stat.)} \pm 0.005 \text{ (syst.)}$

Phys. Rev. Lett. 110,031801 (2013) (1fb⁻¹)

$$\mathcal{A}_{CP} = \frac{\Gamma(B^- \to K^- \mu^+ \mu^-) - \Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^- \to K^- \mu^+ \mu^-) + \Gamma(B^+ \to K^+ \mu^+ \mu^-)}$$

- Control channel B⁺->J/ψK⁺ used to account for production and detection asymmetries
- Left-Right asymmetry accounted for by averaging magnet polarity
- Result consistent with SM prediction

24

New observables in B°->K*µµ

${ m GeV^2/c^4}$	P_4'	P_5'	P_6'	P'_8
0.10 - 2.00	$0.00^{+0.26}_{-0.26}\pm 0.03$	$0.45^{+0.19}_{-0.22}\pm0.09$	$-0.24^{+0.19}_{-0.22}\pm0.05$	$-0.06^{+0.28}_{-0.28}\pm0.02$
2.00 - 4.30	$-0.37^{+0.29}_{-0.26}\pm 0.08$	$0.29^{+0.39}_{-0.38}\pm 0.07$	$0.15^{+0.36}_{-038}\pm0.05$	$-0.15^{+0.29}_{-0.28}\pm0.07$
4.30 - 8.68	$-0.59^{+0.15}_{-0.12}\pm0.05$	$-0.19^{+0.16}_{-0.16}\pm0.03$	$-0.04^{+0.15}_{-0.15}\pm0.05$	$0.29^{+0.17}_{-0.19}\pm 0.03$
10.09 - 12.90	$-0.46^{+0.20}_{-0.17}\pm0.03$	$-0.79^{+0.16}_{-0.19}\pm0.19$	$-0.31^{+023}_{-0.22}\pm0.05$	$-0.06^{+0.23}_{-0.22}\pm0.02$
14.18 - 16.00	$0.09^{+0.35}_{-0.27}\pm0.04$	$-0.79^{+0.20}_{-0.13}\pm0.18$	$-0.18^{+0.25}_{-0.24}\pm0.03$	$-0.20^{+0.30}_{-0.25}\pm0.03$
16.00 - 19.00	$-0.35^{+0.26}_{-0.22}\pm0.03$	$-0.60^{+0.19}_{-0.16}\pm0.09$	$0.31^{+0.38}_{-0.37}\pm0.10$	$0.06^{+0.26}_{-0.27}\pm0.03$
1.00 - 6.00	$-0.29^{+0.18}_{-0.16}\pm 0.03$	$0.21^{+0.20}_{-0.21}\pm 0.03$	$0.18^{+0.21}_{-0.21}\pm0.03$	$0.23^{+0.18}_{-0.19}\pm0.02$
	S_4	S_5	S_7	S_8
	S4	S5	<i>S</i> ₇	S ₈
0.10 - 2.00	$S_4 \ -0.01^{+0.12}_{-0.12}\pm 0.03$	S_5 $0.22^{+0.09}_{-0.10}\pm 0.04$	$S_7 \ -0.12^{+0.11}_{-0.11}\pm 0.03$	S_8 $-0.04^{+0.12}_{-0.12}\pm 0.01$
0.10 - 2.00 2.00 - 4.30	$S_4 \ -0.01^{+0.12}_{-0.12}\pm 0.03 \ -0.14^{+0.13}_{-0.12}\pm 0.03$	$S_5 \ 0.22^{+0.09}_{-0.10}\pm 0.04 \ 0.11^{+0.14}_{-0.13}\pm 0.03$	$S_7 \ -0.12^{+0.11}_{-0.11}\pm 0.03 \ 0.06^{+0.15}_{-0.15}\pm 0.02$	$S_8 \ -0.04^{+0.12}_{-0.12}\pm 0.01 \ -0.05^{+0.12}_{-0.12}\pm 0.02$
0.10 - 2.00 2.00 - 4.30 4.30 - 8.68	$S_4 \ -0.01^{+0.12}_{-0.12}\pm 0.03 \ -0.14^{+0.13}_{-0.12}\pm 0.03 \ -0.29^{+0.06}_{-0.06}\pm 0.02$	$S_5 \ 0.22^{+0.09}_{-0.10}\pm 0.04 \ 0.11^{+0.14}_{-0.13}\pm 0.03 \ -0.09^{+0.08}_{-0.08}\pm 0.01$	$S_7 \ -0.12^{+0.11}_{-0.11}\pm 0.03 \ 0.06^{+0.15}_{-0.15}\pm 0.02 \ -0.03^{+0.07}_{-0.08}\pm 0.04$	$S_8 \ -0.04^{+0.12}_{-0.12}\pm 0.01 \ -0.05^{+0.12}_{-0.12}\pm 0.02 \ 0.13^{+0.08}_{-0.08}\pm 0.01$
0.10 - 2.00 2.00 - 4.30 4.30 - 8.68 10.09 - 12.90	$S_4 \ -0.01^{+0.12}_{-0.12}\pm 0.03 \ -0.14^{+0.13}_{-0.12}\pm 0.03 \ -0.29^{+0.06}_{-0.06}\pm 0.02 \ -0.22^{+0.09}_{-0.08}\pm 0.02$	$S_5 \ 0.22^{+0.09}_{-0.10}\pm 0.04 \ 0.11^{+0.14}_{-0.13}\pm 0.03 \ -0.09^{+0.08}_{-0.08}\pm 0.01 \ -0.40^{+0.08}_{-0.10}\pm 0.10$	$S_7 \ -0.12^{+0.11}_{-0.11}\pm 0.03 \ 0.06^{+0.15}_{-0.15}\pm 0.02 \ -0.03^{+0.07}_{-0.08}\pm 0.04 \ -0.17^{+0.11}_{-0.11}\pm 0.03$	$S_8 \ -0.04^{+0.12}_{-0.12}\pm 0.01 \ -0.05^{+0.12}_{-0.12}\pm 0.02 \ 0.13^{+0.08}_{-0.08}\pm 0.01 \ -0.03^{+0.10}_{-0.10}\pm 0.01$
0.10 - 2.00 2.00 - 4.30 4.30 - 8.68 10.09 - 12.90 14.18 - 16.00	$S_4 \ -0.01^{+0.12}_{-0.12}\pm 0.03 \ -0.14^{+0.13}_{-0.12}\pm 0.03 \ -0.29^{+0.06}_{-0.06}\pm 0.02 \ -0.22^{+0.09}_{-0.08}\pm 0.02 \ 0.05^{+0.14}_{-0.08}\pm 0.01$	S_5 $0.22^{+0.09}_{-0.10} \pm 0.04$ $0.11^{+0.14}_{-0.13} \pm 0.03$ $-0.09^{+0.08}_{-0.08} \pm 0.01$ $-0.40^{+0.08}_{-0.10} \pm 0.10$ $-0.38^{+0.10}_{-0.09} \pm 0.09$	$S_7 \ -0.12^{+0.11}_{-0.11}\pm 0.03 \ 0.06^{+0.15}_{-0.15}\pm 0.02 \ -0.03^{+0.07}_{-0.08}\pm 0.04 \ -0.17^{+0.11}_{-0.11}\pm 0.03 \ -0.08^{+0.13}_{-0.14}\pm 0.01$	$\begin{split} S_8 \\ -0.04^{+0.12}_{-0.12} \pm 0.01 \\ -0.05^{+0.12}_{-0.12} \pm 0.02 \\ 0.13^{+0.08}_{-0.08} \pm 0.01 \\ -0.03^{+0.10}_{-0.10} \pm 0.01 \\ -0.10^{+0.13}_{-0.12} \pm 0.02 \end{split}$