### Search for Direct Production of Charginos and Neutralinos in Events with Three Leptons and Missing Transverse Momentum with the ATLAS Detector

**Steve Farrell** 

APS DPF Meeting University of California, Santa Cruz

Aug 15, 2013



### Contents

- Electroweak SUSY introduction
  - Motivation and features
- Signal models
- Event selection
- Background estimation
  - Methods and validation
- Results and statistical interpretation
- Conclusions

Results in this talk can be found at

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-035/

### Electroweak SUSY

- EWK SUSY includes direct production of the partners of the gauge bosons, Higgs boson(s), and leptons
- Squark and gluino mass limits are already at the TeV scale
  - EWK production might be the dominant SUSY process at the LHC
- Natural SUSY prefers light gauginos and higgsinos
  - EWK searches complementary to 3rd gen squark searches
- EWK production can give multi-lepton signatures with low hadronic activity
  - Low Standard Model background





- General strategy
  - Search for production of gauginos and higgsinos in as many production/ decay modes as possible
  - Aim for discovery of new particles, but if results are consistent with Standard Model then set limits on production cross sections
  - Formulate results in terms of simplified models which can represent many SUSY models



### • This analysis

- Search for chargino1-neutralino2 production and decay into three-lepton final states with missing transverse momentum
- Search for decay modes with intermediate sleptons and W/Z bosons



### Signals: simplified models



- Direct production of chargino1-neutralino2 (C1N2) with two decay modes
  - Intermediate sleptons/sneutrinos (flavor democratic)
  - Intermediate W and Z bosons (on-shell and off-shell)
- Results are generic and can be applied to any SUSY-like model
- Technical details
  - C1 and N2 are wino-like and mass degenerate
  - N1 is bino-like
  - Slepton, sneutrino mass degenerate
    - Set halfway between C1/N2 and N1

### Object selection

### • Electrons

- Combines ID track and calorimeter shower
- p<sub>T</sub> > 10 GeV
- ID track and calorimeter isolation cuts
- Impact parameter cuts
- Muons
  - Statistical combination of an ID track with a muon spectrometer track
  - p<sub>T</sub> > 10 GeV
  - ID track isolation cuts
  - Impact parameter cuts

- Jets
  - Hadronic calorimeter shower clusters and ID tracks
  - p<sub>T</sub> > 20 GeV
  - b-jets tagged by looking for a displaced vertex (85% efficient)
- Missing transverse energy (MET)
  - Calculated by summing all energy deposits in the calorimeters
  - Corrected for reconstructed electrons, muons, and photons

|                                         | Z depleted         |                        |                 | Zenriched  |                       |                 |
|-----------------------------------------|--------------------|------------------------|-----------------|------------|-----------------------|-----------------|
| Selection                               | SRnoZa             | SRnoZb                 | SRnoZc          | SRZa       | SRZb                  | SRZc            |
| m <sub>SFOS</sub> [GeV]                 | <60                | 60-81.2                | <81.2 or >101.2 | 81.2-101.2 | 81.2-101.2            | 81.2-101.2      |
| $E_{\rm T}^{\rm miss}$ [GeV]            | >50                | >75                    | >75             | 75-120     | 75-120                | >120            |
| $m_{\rm T}$ [GeV]                       | -                  | _                      | >110            | <110       | >110                  | >110            |
| $p_{\rm T} 3^{\rm rd} \ell [{\rm GeV}]$ | >10                | >10                    | >30             | >10        | >10                   | >10             |
| SR veto                                 | SRnoZc             | SRnoZc                 | -               | -          | _                     | _               |
| Target                                  | Low mass splitting | No-slep<br>off-shell Z | Slepton<br>bulk | WZ-like    | No-slep<br>on-shell Z | No-slep<br>bulk |

- Signal regions are split into Z selection and Z veto regions with varying tightness designed to target different areas of our signal grids
- Orthogonality between SRs is imposed
  - Regions are statistically combined for the limits

# Background model overview

- Irreducible background: processes with 3 real, isolated leptons
  - Diboson WZ and ZZ
  - Triboson
  - ttbar + W/Z

#### • Reducible background: process with 1 or 2 fake leptons

- W+jets, Z+jets
- ttbar, single top
- WW
- Reducible background with 3 fake leptons is *negligible*



Modeled with Monte Carlo

Modeled with Matrix Method

### Matrix method fake lepton estimate



- Relates tight (T) and loose (L) lepton properties to real (R) and fake (F) objects in terms of real lepton efficiency (ε<sub>i</sub>) and fake rate (f<sub>i</sub>)
  - For electrons, we use isolation, impact parameters, and ID cuts
  - For **muons**, we use isolation and impact parameters
- Leading light lepton is not used in the matrix equation (hence 4x4 matrix)
  - Background dominated by leading real lepton + softer fakes
- Inversion of equation gives the estimate of events with 1 or 2 fake leptons:

$$N_{Fake \to TT} = \epsilon_1 f_2 \times N_{RF} + f_1 \epsilon_2 \times N_{FR} + f_1 f_2 \times N_{FF}$$

### Matrix method efficiencies

- Real and fake efficiencies can depend on type, physics process, and object/event kinematics
- Use both data and MC to derive weighted average efficiencies for each signal and validation region
  - Data/MC scale factors correct MC efficiencies
  - Baseline efficiencies measured in MC with loose selection
  - Process fractions measured in MC for each signal and validation region
- Weighted average fake efficiency for generic region XR:

$$f_{XR} = \sum_{i,j} (SF^i \times R^{ij}_{XR} \times f^{ij})$$

- SF<sup>i</sup> = scale factor for lepton fake type i (heavy flavor, conversion, etc.)
- R<sup>ij</sup> = fraction of type i and process j (tt, VV, etc.) in region
- f<sup>ij</sup> = fake efficiency for type i from process j



#### • We define validation regions which target various background sources

| Selection                    | VRnoZa                    | VRnoZb          | VRZa       | VRZb       |
|------------------------------|---------------------------|-----------------|------------|------------|
| m <sub>SFOS</sub> [GeV]      | <81.2 or >101.2           | <81.2 or >101.2 | 81.2-101.2 | 81.2-101.2 |
| <i>b</i> -jet                | veto                      | request         | veto       | request    |
| $E_{\rm T}^{\rm miss}$ [GeV] | 35-50                     | >50             | 30-50      | >50        |
| Dominant process             | $WZ^*, Z^*Z^*, Z^*+$ jets | $t\bar{t}$      | WZ, Z+jets | WZ         |

#### • We then compare the SM prediction with data

| Selection               | VRnoZa                      | VRnoZb                      | VRZa                         | VRZb                        |
|-------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|
| Tri-boson               | $1.4 \pm 1.4$               | $0.5 \pm 0.5$               | $0.6 \pm 0.6$                | $0.26 \pm 0.26$             |
| ZZ                      | $(1.3 \pm 0.9) \times 10^2$ | $4.5 \pm 2.8$               | $108 \pm 23$                 | $6.9 \pm 2.2$               |
| $t\bar{t}V$             | $2.9 \pm 1.2$               | $21 \pm 7$                  | $7.4 \pm 2.6$                | $26 \pm 8$                  |
| WZ                      | $110 \pm 21$                | $34 \pm 15$                 | $(5.5 \pm 0.9) \times 10^2$  | $(1.4 \pm 0.4) \times 10^2$ |
| $\Sigma$ SM irreducible | $(2.4 \pm 0.9) \times 10^2$ | $60 \pm 16$                 | $(6.6 \pm 0.9) \times 10^2$  | $(1.7 \pm 0.4) \times 10^2$ |
| SM reducible            | $(1.5 \pm 0.6) \times 10^2$ | $(0.7 \pm 0.4) \times 10^2$ | $(3.8 \pm 1.4) \times 10^2$  | $27 \pm 13$                 |
| ΣSM                     | $(3.9 \pm 1.1) \times 10^2$ | $(1.3 \pm 0.5) \times 10^2$ | $(10.4 \pm 1.7) \times 10^2$ | $(2.0 \pm 0.4) \times 10^2$ |
| Data                    | 463                         | 141                         | 1131                         | 171                         |

Good agreement is observed in each region

### Background model validation

#### ATLAS-CONF-2013-035



- Kinematic distributions in the validation regions show good agreement
- Background modeling looks ok -> open the signal region box!

### Observed data in the signal regions ATLAS-CONF-2013-035

| Selection                                     | SRnoZa          | SRnoZb          | SRnoZc                          | SRZa          | SRZb          | SRZc            |
|-----------------------------------------------|-----------------|-----------------|---------------------------------|---------------|---------------|-----------------|
| Tri-boson                                     | $1.7 \pm 1.7$   | $0.6 \pm 0.6$   | $0.8 \pm 0.8$                   | $0.5 \pm 0.5$ | $0.4 \pm 0.4$ | $0.29 \pm 0.29$ |
| ZZ                                            | $14 \pm 8$      | $1.8 \pm 1.0$   | $0.25 \pm 0.17$                 | $8.9 \pm 1.8$ | $1.0 \pm 0.4$ | $0.39 \pm 0.28$ |
| $t\bar{t}V$                                   | $0.23 \pm 0.23$ | $0.21 \pm 0.19$ | $0.21^{+0.30}_{-0.21}$          | $0.4 \pm 0.4$ | $0.22\pm0.21$ | $0.10\pm0.10$   |
| WZ                                            | $50 \pm 9$      | $20 \pm 4$      | $2.1 \pm 1.6$                   | $235\pm35$    | $19 \pm 5$    | $5.0 \pm 1.4$   |
| $\Sigma$ SM irreducible                       | $65 \pm 12$     | $22 \pm 4$      | $3.4 \pm 1.8$                   | $245\pm35$    | $20 \pm 5$    | $5.8 \pm 1.4$   |
| SM reducible                                  | $31 \pm 14$     | $7 \pm 5$       | $1.0 \pm 0.4$                   | $4^{+5}_{-4}$ | $1.7 \pm 0.7$ | $0.5 \pm 0.4$   |
| $\Sigma$ SM                                   | $96\pm19$       | $29\pm 6$       | $\textbf{4.4} \pm \textbf{1.8}$ | $249\pm35$    | $22\pm 5$     | $6.3 \pm 1.5$   |
| Data                                          | 101             | 32              | 5                               | 273           | 23            | 6               |
| p <sub>0</sub> -value                         | 0.41            | 0.37            | 0.40                            | 0.23          | 0.44          | 0.5             |
| N <sub>signal</sub> excluded (exp)            | 39.3            | 16.3            | 6.2                             | 67.9          | 13.2          | 6.7             |
| Nsignal excluded (obs)                        | 41.8            | 18.0            | 6.8                             | 83.7          | 13.9          | 6.5             |
| $\sigma_{\text{visible}}$ excluded (exp) [fb] | 1.90            | 0.79            | 0.30                            | 3.28          | 0.64          | 0.32            |
| $\sigma_{\rm visible}$ excluded (obs) [fb]    | 2.02            | 0.87            | 0.33                            | 4.04          | 0.67          | 0.31            |

- No excess observed. The data is consistent with the background predictions.
- We set limits on the visible cross section for new physics (production cross section times acceptance times efficiency) at 95% CL using a modified CL<sub>S</sub> prescription
- Uncertainties modeled as nuisance parameters in the likelihood with correlations taken into account

### Observed data in the signal regions ATLAS-CONF-2013-035





• Missing E<sub>T</sub> distributions in the signal regions

#### Observed data in the signal regions ATLAS-CONF-2013-035





Data

tt V

✓ Total SM

Reducible

Dibosons

Tribosons

- Transverse mass distributions in the signal regions
  - Computed using non-SFOS pair lepton with the missing E<sub>T</sub>

## Limits in the simplified models



- 95% C.L. limits computed via a *modified frequentist CLs* with uncertainties modeled as nuisance parameters and correlations taken into account
- All six signal regions are statistically combined to give the best limits
- Previous result with 13 fb<sup>-1</sup> of data is in blue
- Large improvement in challenging WZ\*-like region (the gap in the right plot)

### Conclusions

- I've presented an ATLAS search for electroweak SUSY in the three lepton channel with 21 fb<sup>-1</sup> of 8 TeV data
- Results are consistent with the Standard Model prediction; no excess observed
- Limits have been placed on C1N2 production with intermediate sleptons and SM gauge bosons
  - Limits show good improvement over previous results
- Efforts are underway to finalize the 2012 data results in a journal publication

Results in this talk can be found at

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-035/

# Backup slides

| Trigger                                                       | Detail                                           | offline threshold [GeV] |  |  |
|---------------------------------------------------------------|--------------------------------------------------|-------------------------|--|--|
| Single Isolated $e$<br>Single Isolated $\mu$                  | EF_el_EF_e24vhi_medium1<br>EF_mu24i_tight        | 25<br>25                |  |  |
| Double e                                                      | EF_2e12Tvh_loose1<br>EF_e24vh_medium1_e7_medium1 | 14,14<br>25,10          |  |  |
| Double $\mu$                                                  | EF_2mu13<br>EF_mu18_tight_mu8_EFFS               | 14,14<br>18,10          |  |  |
| Combined eµ EF_e12Tvh_medium1_mu8<br>EF_mu18_tight_e7_medium1 |                                                  | 14,10<br>18,10          |  |  |

- Trigger requirement is a logical OR of all of the trigger chains above
- Leptons are required to be above the listed thresholds and matched to trigger features with dR < 0.15</li>
- Only the leading lepton is considered for the single isolated triggers
  - Avoids issues with the matrix method which exploits the isolation of the subleading leptons

### Systematic uncertainties

- Irreducible
  - Total uncertainty 14-71%
  - Generator uncertainty 12-66%
  - Cross section 10-12%
  - MC statistics 2-14%
- Reducible
  - Total uncertainty 37-80%
  - Data statistics 12-71%
  - Process fractions 5-29%
  - MET dependence of efficiencies 5-64%
  - Scale factors <1-13%