Electron Capture Spectroscopy and Isotope Production: Research Toward A Neutrino Mass Measurement

Los Alamos National Laboratory

J. Hayes-Wehle, R.D. Horansky, V. Kotsubo,

D.R. Schmidt, J.N. Ullom NIST

National Institute of Standards and Technology
Neutrino Mass via Endpoint Spectroscopy

Anti Neutrino via Beta Decay of Tritium

Neutrino via Electron Capture of ^{163}Ho

Large Spectrometer - KATRIN

Transition Edge Sensor in a Cryostat
163Ho Endpoint and Neutrino Mass Sensitivity (Simulation)

- Endpoint simulation for 10^{14} decays and a spectral resolution of 1 eV

![Graphs showing 1 Bq for 1 day and 10 Bq for 1 month](image)

Neutrino mass sensitivity for Q-2.8 KeV (green line)
163Ho Isotope Production

J. W. Engle et al., NIM B, 311 (2013) 131-138

<table>
<thead>
<tr>
<th>Incident Particle</th>
<th>Target</th>
<th>163Ho Production Rate (atoms/hr)</th>
<th>166mHo Production Rate (atoms/hr)</th>
<th>163Ho/166mHo Atom Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 16 MeV p^+</td>
<td>nat Dy</td>
<td>10^{14}</td>
<td>10^{4-5}</td>
<td>10^{9-10}</td>
</tr>
<tr>
<td>(b) 24 MeV p^+</td>
<td>nat Dy</td>
<td>10^{15}</td>
<td>10^{0-9}</td>
<td>10^{0-9}</td>
</tr>
<tr>
<td>(c) 40 MeV α</td>
<td>nat Dy</td>
<td>10^{14}</td>
<td>10^7</td>
<td>10^5</td>
</tr>
<tr>
<td>(c) 40 MeV α</td>
<td>161Dy</td>
<td>10^{10}</td>
<td>10^4</td>
<td>10^7</td>
</tr>
<tr>
<td>(d) 10^{14} α</td>
<td>162Er</td>
<td>10^{13-15}</td>
<td>10^{10-12}</td>
<td>10^{5-7}</td>
</tr>
<tr>
<td>neutron/cm²/sec</td>
<td></td>
<td>(per mg 162Er)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Proton irradiation of Dy or neutron irradiation of Er
- Greater radio-isotopic purity is achievable using charged particle irradiations
Isotope Separation

- Chemical separation to isolate 163Ho from irradiated dysprosium target

- High performance liquid chromatography (HPLC)
 - Cation exchange resin
 - α-HIBA as eluent
 - UV-Vis detection
 - Post column detection reagent 4-(2-pyridylazo)resorcinol
Transition Edge Sensor for Measurement

- Superconducting film biased with a constant voltage in the transition region between its normal and superconducting states

- Current flowing through film changes flux in inductively coupled SQUID to produce voltage signal.

\[\Delta E \sim (k_bT^2C)^{1/2} \]
Cryostat and Dedicated Electron Capture TES

- Pulse Tube Cryostat
- Detectors at 90 mK
- EC - TES (350x350 um)
- Total C ~ 1pJ/k
Absorber (Deposition and Diffusion Bonding)

- Electroplating: metallic, thin, uniform deposition
- Pressure (deform Au)
- Heat (400°C)
- Time (1 hr)
- Inert atmosphere
 - Avoid oxidation of embedded material

Electroplated LANL-made 55Fe

Electroplated commercial 55Fe
Electron Capture Spectroscopy of embedded 55Fe

- Electroplated 55Fe in diffusion bonded Au
- Absorber C ~ 0.17 pJ/K, 33x45x18 µm, diffusion bonded to TES structure
- Total C ~ 1 pJ/K
- 9.0+-0.2 eV Resolution

Counts are per 1.00 eV bins
SUMMARY

- Isotope Production via Proton Irradiation
- Isotope Separation via HPLC
- Transition Edge Detector with SQUID readout in Cryostat
- Dedicated Electron Capture TES with total C of ~1 pJ/K
- First test with surrogate EC uses ^{55}Fe
- Resolution obtained better that 10 eV

Outlook
- First measurement with ^{163}Ho planned for this year
- Increase channel count by RF multiplexing