Electron Capture Spectroscopy and Isotope Production: Research Toward A Neutrino Mass Measurement

G.J. Kunde, J.W. Engle, F.M. Nortier, E.R. Birnbaum, W.A. Taylor,

V. Mocko, M.P. Croce, A.S. Hoover, M.W. Rabin

Los Alamos National Laboratory

J. Hayes-Wehle, R.D. Horansky, V. Kotsubo,

D.R. Schmidt, J.N. Ullom NIST

National Institute of Standards and Technology

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Neutrino Mass via Endpoint Spectroscopy

Anti Neutrino via Beta Decay of Tritium

Neutrino via Electron Capture of ¹⁶³Ho

Large Spectrometer - KATRIN

Transition Edge Sensor in a Cryostat

¹⁶³Ho Endpoint and Neutrino Mass Sensitivity (Simulation)

 Endpoint simulation for 10¹⁴ decays and a spectral resolution of 1 eV

Neutrino mass sensitivity for Q-2.8 KeV (green line)

1017

Incident Particle	Target	¹⁶³ Ho Production Rate (atoms/hr)	^{166m} Ho Production Rate (atoms/hr)	¹⁶³ Ho/ ^{166m} H o Atom Ratio
^(a) 16 MeV p ⁺	^{nat} Dy	10 ¹⁴	104-5	109-10
^(b) 24 MeV p^+	^{nat} Dy	10 ¹⁵	10 ⁶⁻⁹	10 ⁶⁻⁹
^(c) 40 MeV a	^{nat} Dy	10 ¹³	10'	10 [°]
^(c) 40 MeV a	¹⁶¹ Dy	10 ¹⁰	10 ³	10 ⁷
^(d) 10 ¹⁴ neutrons/cm ² /sec	¹⁶² Er	10 ¹³⁻¹⁵ (per mg ¹⁶² Er)	10 ¹⁰⁻¹²	10 ³⁻⁵

Ζ

- Proton irradiation of Dy or neutron irradiation of Er
- Greater radio-isotopic purity is achievable using charged particle irradiations

Isotope Separation

- Chemical separation to isolate ¹⁶³Ho from irradiated dysprosium target
- High performance liquid chromatography (HPLC)
 - Cation exchange resin
 - α-HIBA as eluent
 - UV-Vis detection
 - Post column detection reagent 4-(2-pyridylazo)resorcinol

Transition Edge Sensor for Measurement

- Superconducting film biased with a constant voltage in the transition region between its normal and superconducting states
- Current flowing through film changes flux in inductively coupled SQUID to produce voltage signal.

Cryostat and Dedicated Electron Capture TES

- Pulse Tube Cryostat
- Detectors at 90 mK
- EC TES (350x350 um)
- Total C ~ 1pJ/k

Absorber (Deposition and Diffusion Bonding)

- Electroplating: metallic, thin, uniform deposition
- Pressure (deform Au)
- Heat (400°C)
- Time (1 hr)
- Inert atmosphere
 - Avoid oxidation of
 embedded material

Electron Capture Spectroscopy of embedded ⁵⁵Fe

- Electroplated ⁵⁵Fe in diffusion bonded Au
- Absorber C ~0.17 pJ/K, 33x45x18 µm, diffusion bonded to TES structure
- Total C ~1 pJ/K
- 9.0+-0.2 eV Resolution

- Isotope Production via Proton Irradiation
- Isotope Separation via HPLC
- Transition Edge Detector with SQUID readout in Cryostat
- Dedicated Electron Capture TES with total C of ~1 pJ/K
- First test with surrogate EC uses ⁵⁵Fe
- Resolution obtained better that 10 eV
- Outlook
 - First measurement with ¹⁶³Ho planned for this year
 - Increase channel count by RF multiplexing