The Belle II Experiment at SuperKEKB: construction, commissioning and physics prospects

Sven Vahsen, University of Hawaii

... with an acknowledgement to my Belle colleagues, in particular Leo Piilonen, for their contributions

DPF Meeting, Santa Cruz, California, August 2013

Executive Summary

• Belle @ KEKB and Babar @ PEP-II:

- Successful B-factory experiments, running until 2010 and 2008
- Highest e^+e^- luminosities seen to date
- Rich Physics Legacy. Established KM mechanism as valid description of CP violation in Standard Model
- Belle II @ SuperKEKB: Next generation B-factory
 - Goal: Record 50 x larger integrated Luminosity than Belle
 - Approved and under construction
 - First physics run expected in 2016
 - Rich physics program, complimentary to LHC, enabled by larger data set

The Nobel Prize in Physics 2008 Yoichiro Nambu, Makoto Kobayashi, Toshihide Maskawa

The Nobel Prize in Physics 2008

Photo: University of Chicago Yoichiro Nambu

Photo: U. Montan Makoto Kobayashi

Photo: U. Montan Toshihide Maskawa

The Nobel Prize in Physics 2008 was divided, one half awarded to Yoichiro Nambu *"for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"*, the other half jointly to Makoto Kobayashi and Toshihide Maskawa *"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"*.

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v$, $D\tau v$)
- $b \rightarrow s$ transitions: probe for new sources of CPV and constraints from the $b \rightarrow s\gamma$ branching fraction
- Forward-backward asymmetry (A_{FB}) in b→sl⁺l⁻ has become a powerful tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

Possible also because of unique capabilities of B factories: detection of neutrals, neutrinos, clean event environment.

Belle & Belle II talks at this Conference

- 1. Leptonic and semileptonic decays at Belle 2013-08-16 17:05:00
- 2. Measurements of Electroweak Penguins at Belle 2013-08-16 16:25:00
- 3. Belle II (construction, commissioning and prospects) 2013-08-16 16:18:00
- 4. Results on New Particles from Belle 2013-08-16 09:10:00
- 5. Results from Belle's Upsilon(5S) data sample 2013-08-16 08:50:00
- 6. CP Violation results from Belle 2013-08-15 17:00:00
- 7. Hadronic B Decays from Belle 2013-08-15 16:00:00
- 8. Charm mixing and CP Violation at Belle 2013-08-15 14:50:00
- 9. Particle identification with the iTOP detector at Belle-II 2013-08-15 10:55:00

Belle physics output (compiled by Simon Eidelman)

		50-99	100-	199	200-299	300-399	400-499	>500	Total
# papers ➡		64	37	7	10	2	-	2	115
		-					-		•
Ν	Title			Year	Cites				
1	X(387	72)		2003	739	grow	ring at =1	00/yea	r :
2	Larg	e CPV		2001	618		-	-	
3	$B \rightarrow$	$X_s\gamma$		2001	381				•
4	CP ir	ו $B^0 \bar{B}^0$		2002	326				:
5	D0 m	nixing		2007	292				•
6	Y(39	45)		2005	290				:
7	$B \rightarrow$	$\tau \nu$		2006	277				÷
8	2 <i>cc</i>			2002	272				
9	b ightarrow	$s\gamma$		2004	265		375 pap	ers pu	blishe
10	$D^{*}_{s}(23)$	$(17), D_{s1}$	(2460)	2003	258		plus	≈30. ∕v	ear
11	<i>D</i> **			2004	249				
12	Z(44:	30)		2008	235				
13	D_{sJ}			2006	221				
14	X(394	40) in 2 cc̄		2007	204				

Searching for New Physics with Belle II

Indirect searches for New Physics complement direct searches at LHC

For sensitive New Physics searches, need O(10²) times more data Belle / KEKB ⇒ Belle II / SuperKEKB

Precision Tests of CKM

>Much more improved measurements

- >Overconstrain Unitarity Triangle
- >Discrepancy between measurements \rightarrow new physics?

2012: ~1500 fb⁻¹, Belle + BaBar

Belle II physics prospects: B decays

B decays with τ leptons

- B $\rightarrow \tau v$ and B $\rightarrow D^{(*)}\tau v$
- Sensitive to charged Higgs

Belle II physics prospects: Tau and charm

Lepton flavor violation in τ decays

- strongly suppressed in SM: BF ~ 10⁻⁵³-10⁻⁴⁹
- Possible enhancements in NP models up to BF ~ 10⁻⁹-10⁻⁷

CP violation in D mixing

 Direct and indirect CPV in D⁰-D⁰ mixing

Constraints on indirect CPV parameters

Complementary to LHCb

Observable	Expected th.	Expected exp.	Facility	
	accuracy	uncertainty		
CKM matrix				
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory	
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II	
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II	
$\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb	
ϕ_2		1.5°	Belle II	
ϕ_3	***	3°	LHCb	
CPV				
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb	
$S(B_s \to \phi \phi)$	**	0.05	LHCb	\rightarrow Need both I HCb and
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb	
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II	cupor P factorios to covor
$S(B_d \to K^*(\to K^0_S \pi^0)\gamma))$	***	0.03	Belle II	Super Diractories to cover
$S(B_s o \phi \gamma))$	***	0.05	LHCb	
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II	all aspects of precision
A_{SL}^d	***	0.001	LHCb	
A_{SL}^s	***	0.001	LHCb	flavour physics
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II	navour priysics
rare decays				
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II	
$B(B \rightarrow D\tau\nu)$		3%	Belle II	
$\mathcal{B}(B_d \rightarrow \mu\nu)$	**	6%	Belle II	
$\mathcal{B}(B_s o \mu \mu)$	***	10%	LHCb	
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb	
$\mathcal{B}(B \rightarrow K^{(*)}\nu\nu)$	***	30%	Belle II	
$\mathcal{B}(B \rightarrow s\gamma)$		4%	Belle II	
$\mathcal{B}(B_s \to \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)	adapted from G. Isidori et al
$\mathcal{B}(K \rightarrow \pi \nu \nu)$	**	10%	K-factory	
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory	Ann. Rev. Nucl. Part. Sci. 60, 355 (2010)
charm and τ				
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II	B. Golob, KEK FF Workshop,
$ q/p _D$	***	0.03	Belle II	
$arg(q/p)_D$	***	1.5°	Belle II	Feb. 2012 ¹⁰

Power of e⁺e⁻, example: Full Reconstruction Method

- Fully reconstruct one of the B mesons to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

 \rightarrow Offline B meson beam!

Powerful tool for B decays with neutrinos

Search for New Physics at Belle II

- Precision CKM unitarity tests
- ✓ NP effects in *B* decays with missing energy, such as $B \to \tau \nu, B \to D^{(*)} \tau \nu, B \to K \nu \nu, ...$

Strategies for Increasing Luminosity

Nano-beams and a factor of two larger beam currents

[Beam Channel]

Super

Entirely new LER beam pipe with ante-chamber and Ti-N coating

Fabrication of the LER arc beam pipe section is completed

Al ante-chamber before coating

After TiN coating before baking

After baking

All 100 4 m long dipole magnets have been successfully installed in the low energy ring (LER)!

Three magnets per day !

Installing the 4 m long LER dipole **over** the 6 m long HER dipole (remains in place).

Magnet installation

SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

Upgrade of RF system to cope with twice beam currents and 2.5 times beam power

RF high power system

1.2 MW CW klystron

Superconducting cavities SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

DR under construction on 18/Dec/2012

Positron Damping Ring (new)

- Tunnel construction under way in 2012-13; half year delay due to budget suspend caused by the earthquake.
- Construction of buildings for DR will start in April this year.
- Fabrication of accelerator components ongoing.
 Installation starts in 2014.
- DR commissioning will start in 2015.

Inside DR tunnel

SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

IR magnets overview

Super

KEKB

6-

Experimental Challenges at High Luminosity

>High background (10-20 times higher than at Belle)

- Fake hits, pile up, radiation damage
- >Higher trigger rate
 - Typical Level1 trigger rate: 20kHz
 - High performance DAQ
- >Important improvements
 - Hermeticity for full reconstruction analyses
 - IP and secondary vertex resolution
 - = K_s and π^0 identification efficiency
 - Improve Kaon/pion separation
- >Details in TDR *arXiv:1011.0352*

Belle II detector

Higher backgrounds (× 20) \Rightarrow higher occupancy, radiation damage Higher event rate \Rightarrow faster trigger, DAQ, computing

Special requirements, e.g. low-momentum μ ID (b \rightarrow s $\mu\mu$), hermeticity (ν reco.)

Barrel PID: Time of propagation (TOP) counter

- Cherenkov ring imaging with precise time measurement.
- Device uses internal reflection of Cerenkov ring images from quartz like the BaBar DIRC
- Reconstruct Cherenkov angle from two hit coordinates and the time of propagation of the photon
 - Quartz radiator (2cm)
 - Photon detector (MCP-PMT)
 - Good time resolution ~ 40 ps
 - Single photon sensitivity in 1.5 T field
 - Hamamatsu SL10

Detection of muons and KLs: Parts of the present RPC system have to be replaced to handle higher backgrounds (mainly from neutrons).

SuperKEKB/Belle II schedule

- BEAST II Commissioning detector will characterize radiation near SuperKEKB interaction point during beam commissioning
 - Ensure radiation levels safe before Belle roll-in
 - Measure individual beam background components, to validate / tune simulation
 - System test of Belle II subdetectors and systems (beam abort, VXD cooling, occupancy, etc)

KEKB commissioning detector – *BEAST* – *in 1998*

Timeline & goal

Groundbreaking Ceremony, November 18th, 2011

Belle II Collaboration

>21 countries/regions, 76 institutions, ~480 collaborators

>Very successful e⁺e⁻ B Factories: Belle and BaBar

- Major upgrade: SuperKEKB and Belle II
- >50 times larger integrated luminosity compared to Belle
 - Challenges to both accelerator and detector
- >Fully approved and construction is ongoing
- >First physics run in 2016

>New era of discoveries, complementary to LHC

BACKUP SLIDES

Machine design parameters

poromotoro	KEKB		SuperKEKB			
parameters	LER	HER	LER	HER	units	
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41.5		mrad
Horizontal emittance	٤x	18	24	3.2	4.6	nm
Emittance ratio	к	0.88	0.66	0.37	0.40	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	l _b	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ _y	0.129	0.090	0.0881	0.0807	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

• Nano-beams and a factor of two more beam current to increase luminosity

- Large crossing angle
- Change beam energies to solve the problem of short lifetime for the LER 35

Strategies for increasing luminosity

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB 36

Belle II Detector – vertex region

Vertex Detector

DEPFET: http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

DEpleted P-channel FET

SVD Mechanical Mockup

Gearing up for ladder production!

M.Friedl (HEPHY Vienna): SVD Status and Prospects

11 March 2013

Central drift chamber

- Extended outer radius
- Smaller cells near beampipe
- Faster readout electronics

⇒ Improved p and dE/dx resolution

 $\sigma_p/p \approx 0.3\% + 0.1\% \times p(\text{GeV})$ in *B*=1.5T $\sigma (dE/dx) \sim 6\%$

	Belle	Belle II	
Innermost sense wire	r=88mm	r=168mm	
Outermost sense wire	r=863mm	r=1111.4mm	
Number of layers	50	56	
Total sense wires	8400	14336	
Gas	He:C ₂ H ₆	He:C ₂ H ₆	
Sense wire	W(Φ30µm)	W(Φ30μm)	
Field wire	Al(φ120μm)	Al(φ120μm)	

Belle II CDC

Wire Configuration

Much bigger than in Belle!

Wire stringing in a clean room

- thousands of wires,
- 1 year of work...

TOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MAPMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K (~shifted in time)

photon detector.

Aerogel RICH (endcap PID)

RICH with a focusing radiator

Increases the number of photons without degrading the resolution

EM calorimeter: upgrade needed because of higher rates (barrel: electronics, endcap: electronics and $CsI(TI) \rightarrow pure CsI$) and radiation load (endcap: $CsI(TI) \rightarrow pure CsI$)

