

The ArgoNeuT Experiment

ArgoNeuT

Andrzej Szelc (on behalf of S. Farooq, KSU) for the ArgoNeuT Collaboration

DPF2013, Santa Cruz _ c

08/15/2013; DPF2013, Santa Cruz

LArTPC

Liquid argon for ν detection

- Abundant ionization electrons and scintillation light can both be used for detection.
- Reasonably dense (1.4 g/cm³) a good target for neutrinos.
- Relatively cheap and easy to obtain (1% of atmosphere).
- Drawbacks?...no free protons...nuclear effects.
- Most importantly it gives us great opportunity to understand neutrino physics!

LArTPC

LArTPC Concept

- Energy deposition in argon results in ionization and scintillation
- Electrons are drifted in the Electric field towards the anode.
- Signal is induced and then collected on subsequent wire planes (2D location).
- \blacktriangleright Drift time provides 3rd coordinate \rightarrow 3D reconstruction.
- Quantity of charge provides calorimetric reconstruction.

LArTPC

LArTPC Program in the US

Yale TPC

Location: Yale University Location: Fermilab Active volume: 0.002 ton Active volume: 0.02 ton operational: 2007

operational 2008

Location: Fermilab Active volume:0.3 ton operational: 2008 First neutrinos: June 2009 MicroBooNE

Location Fermilab Active volume:0.1 kton Operational: 2014

LAr1

L'ocation: Fermilab Location: Homestake Active volume: 1 kton Active volume: 10/35 kton Construction start: 20162 Construction start 2022

LBNE

Luke

Location: Fermilab Operational: since 2008 Operational: 2011

Location:Fermilab Purpose: materials test st Purpose: LAr purity demo

LArIAT

Location:Fermilab Purpose:LArTPC calibration Operational:2014 (phase 1)

Location: LANL Purpose: LArTPC calibration Operational:2014

LBNE 35 Ton

Location: Fermilab Purpose: purity demo Operational: 2013

ArgoNeuT Goals

- ▶ First TPC in a beam in the US LAr R&D program
- ▶ Measure CC cross sections on argon in the 1-10 GeV range.
- Examine effects of FSI using the TPC's great Granularity
- Examine dE/dx particle ID, especially e/γ separation, crucial for future ν experiments.
- Develop automated reconstruction techniques.

The ArgoNeuT Detector

The ArgoNeuT TPC

Cryostat Volume	500 Liters	
TPC Volume	175 Liters	
# Electronic Channels	480	
Wire Pitch	4 mm	
Electronics Style (Temperature)	JFET (293 K)	
Max. Drift Length (Time)	0.5m (330µs)	
Light Collection	None	

- Two wire planes instrumented (3 present)
- E-field between planes optimized to maximize transparency
- Wire spacing at 4mm.

The ArgoNeuT Detector

NuMI Beam

ArgoNeuT in the MINOS hall

- Remote, shiftless operation for 5 months.
- Acquired 1.35×10^{20} POT, mainly in $\bar{\nu}_{\mu}$ mode.
- Expect \sim o(10k) CC events in ν_{μ} and $\bar{\nu}_{\mu}$

MINOS ND

- ArgoNeuT is too small to contain muons.
- Fortunately, the presence of the MINOS ND allows for their momentum reconstruction and charge identification (q).

We gratefully acknowledge the help of the MINOS collaboration in these analyses.

The ArgoNeuT Reconstruction

- ► The data acquired by ArgoNeuT is still being analyzed.
- The LArSOFT package, developed for US LAr TPCs is being used in the reconstruction.
- Use 3D and calorimetric reconstruction for efficient Particle Identification
- Excellent resolution for final states
- Possibility of "seeing" recoil proton(s)
- Good p/π^{\pm} identification capability
- We can do nuclear physics!

LAr Reconstruction

The Reconstruction Process

- 1st stage Hits (FFtHitFinder, GaussHitFinder)
- 2nd stage -Clustering (DBCluster, FuzzyCluster,...)
- 3rd stage -Combine into 3D tracks (KalmanTracker, BezierTracker,...)

LAr Reconstruction

Calorimetry and PID

- Once we have the 3D track, we reconstruct the dE/dx
- ▶ This allows for Particle ID via total kinetic energy and residual range methods.

Measurement of the ν_{μ} CC inclusive Cross-section

- Used data acquired in neutrino mode (8.5×10¹⁸ POT)
- C. Anderson et al., PRL 108, 2012
- Simple cuts applied:
 - vtx in fiducial volume
 - track matched to muon in MINOS ND
 - MINOS q < 0</p>
- first CC-inclusive cross-section measurements in argon

Calorimetry on Through-going Muons

- Calorimetry tested on through going muons.
- Proves excellent calorimetric reconstruction capabilities of the LArTPC.
- C.Anderson et al., 2012 JINST 7 P10020; arxiv.org:1205.6702,

Recombination Study using Stopping Protons

- Studied the recombination of electron-ion pairs produced in liquid argon by stopping protons and deutrons.
- Angular dependence of recombination - the collected charge by 5% - 10% at small angle (wrt to Electric Field) and high ionization.
- Significantly less than the 25% loss predicted by the Jaffe columnar theory and simulations.
- arXiv:1306.1712, accepted by JINST.

Studies of Nuclear Effects

- LAr-TPC detectors can fully reconstruct exclusive topologies.
- Proton multiplicity and kinematics can be measured with a very low proton energy threshold (21 MeV).
- This will ultimately allow the reconstruction of the incoming neutrino energy from lepton AND proton kinematics.
- And it already allows studying nuclear effects!

Studies of Nuclear Effects (2)

- Nuclear effects play a key role in neutrino-nucleus interactions in nuclear targets.
- Due to intra-nuclear re-scattering (FSI) Final State interactions and possible effects of correlation between target nucleons, a genuine QE interaction can often be accompanied by the ejection of additional nucleons, emission of many de-excitation γ's and sometimes by soft pions in the Final State.
- In ArgoNeuT we are able to observe these effects.

Studies of Nuclear Effects

- Observed backwards going protons kinematically forbidden in an interaction on a free and stationary nucleon.
- Can be an effect of intra-nuclear cascades or short range correlations.
- If nucleon in a correlated pair is knocked out of a nucleus, the "paired" nucleon is also emitted.
- Measuring back-to-back protons could be a "fingerprint of nucleon-nucleon correlations".
- ▶ p1: θ₁=67° L1=5.1 cm, p1=395±4 MeV/c
- ▶ p2: θ₂=116° L2=5.4 cm, p2=401±24 MeV/c
- Angle between two protons $\gamma = 183^{\circ}$

μ + N protons analysis

μ + N protons analysis (2)

Default Fluka flux used. Tuning in progress.

- The MC generators predict varying amounts of proton emission
- 30% of events in GENIE are not CCQE (FSI)
- LAr data can provide an important discriminator among models

CC - inclusive analysis of $\bar{ u}_{\mu}$ data

- Sample size 8 times larger.
- CC inclusive measurements can be made on $\bar{\nu}_{\mu}$, but also on ν_{μ} due to beam composition.
- Area normalized.

08/15/2013; DPF2013, Santa Cruz

CCQE Neutral Hyperon Analysis

NUANCE Event Generator and GEANT4 are used to Simulate the CCQE Hyperon Events in the Detector Cuts:

- Vertex in fiducial volume.
- Track match with positive muon track in MINOS.
- Use vertexing to detect a detached vertex.

dE/dx e/ γ ID

- Separating electrons from γ s is important in precision ν measurements
- e.g. understanding whether the MiniBooNE anomaly is an effect of oscillation or background
- LongBaseline measurements e.g. CP violation etc.
- the dE/dx of a shower can be a powerful discrimination tool: an electron is a Minimum Ionizing Particle, a γ pair converts, so the ionization should be double.

dE/dx e/ γ ID (2)

 ν_e CC candidate

Other Ongoing Analyses

- ▶ NC π^0 cs
- Nuclear de-excitation gammas.
- Coherent pion production
- μ + nprotons + npions

The Future

Future LAr Experiments in the US

- LArIAT (in construction) LAr in a TestBeam (talk in this session)
- MicroBooNE (in construction) Short Baseline (talk in this session)
- LAr1 1kT detector (LOI) Short Baseline
- LBNE Long Baseline

- First LArTPC in a ν beam in the US.
- Provided important know-how used by subsequent LArTPC experiments.
- First ν data collected in the GeV region in Liquid Argon.
- First results already published.
- ► Data analysis is ongoing and more results should come soon.
- The detector itself will be reused as to calibrate the response of LArTPC to charged particles (see LArIAT talk).

Thank You

ArgoNeuT Collaboration

R. Acciarri^a, C. Adams^b, J. Asaadi^c, B. Baller^a, T. Bolton^d, C. Bromberg^e,

F. Cavanna b,f , E. Church^b, D. Edmunds^e, A. Ereditato^g, S. Farooq^d,

B. Fleming^b, H. Greenlee^a, G. Horton-Smith^d, C. James^a, E. Klein^b, K. Lang^h,

P. Laurens^e , D. McKee^d , R. Mehdiyev^h , B. Page^e, O. Palamara^{b,i}, K. Partyka^b,

G. Rameika^a, B. Rebel^a, M. Soderberg^{a,c}, J. Spitz^b, A.M. Szelc^b, M. Weber^g,

T. Yang^a, G.P. Zeller^a

a Fermi National Accelerator Laboratory, Batavia, IL 60510 USA

b Yale University, New Haven, CT 06520 USA

- c Syracuse University, Syracuse, NY 13244 USA
- d Kansas State University, Manhattan, KS 66506 USA

e Michigan State University, East Lansing, MI 48824 USA

- f Universita dellâAquila e INFN, LâAquila, Italy
- g University of Bern, Bern, Switzerland

h The University of Texas at Austin, Austin, TX 78712 USA

i INFN - Laboratori Nazionali del Gran Sasso, Assergi, Italy

Back Up Slides

Measurement of electron drift speed

- Measurement of electron drift velocity confirms understanding of detector.
- Difference of maximum and minimum hit drift gives time.
- Distance is size of detector
- Corrected for different field strengths between planes.

ArgoNeuT Electronics

- "Warm" JFET
 Preamplifiers
- Shaped signal registered by ADF-2 ADCs
- Currrent trend is to go with lower noise, cold CMOS electronics (MicroBooNE, LBNE)

ADC

LArIAT phase 1

- ► The ArgoNeuT detector will be resurrected as LArIAT (Liquid Argon in a Testbeam) phase 1.
- ► The objective calibration of single tracks and collective topologies
- Characterization of response at a range of energies relevant for future experiments (MicroBooNE, LBNE, etc.)
- \blacktriangleright Known input particle type and energy \rightarrow calibrated output response
- Done at Fermilab Test Beam Facility

LArIAT phase 1

- Use Tertiary (low momentum) Beam developed by MINERVA collaboration.
- Provides protons, pions, electrons and muons.
- Modifications to the ArgoNeuT detector include a light readout system, recircuclation in liquid and front flange.
- Planned start of data taking spring 2013.
- A larger TPC, geared towards hadronic shower containment is planned to follow as LArIAT phase 2.

ArgoNeuT Events (1)

ArgoNeuT Events (2)

Energy resolution

36

10.18 8

0.14

0.08

Stopping Protons

- Electrons resulting from an energy deposition has a chance to reattach to the positive ions
- ▶ This effect depends on dE/dx and is nonlinear.
- Measurements in LAr are not very precise, especially at high dE/dx.
- ArgoNeuT observes many stopping proton events, mainly from background interactions.

dE/dx e/ γ ID (1)

- ▶ 3D axis Showers calculated based on the angles of the 2D projections.
- Correction for Birk's recombination factor f(dE/dx) and lifetime applied

 ν_e CC candidate.

dE/dx e/ γ ID (2)

 ν_e CC candidate

dE/dx e/ γ ID (3)

Noble liquids for ν detection

- Abundant ionization electrons and scintillation light can both be used for detection.
- Noble liquids are dense, so they make a good target for neutrinos.
- Argon is relatively cheap and easy to obtain (1% of atmosphere).
- Drawbacks?...no free protons...nuclear effects.

	He	Ne	Ar	kr	Xe	Water
Boiling Point [K] @ Iatm	4.2	27.1	87.3	120.0	165.0	373
Density [g/cm³]	0.125	1.2	1.4	2.4	3.0	1
Radiation Length [cm]	755.2	24.0	4.0	4.9	2.8	36.1
Scintillation [y /MeV]	19,000	30,000	40,000	25,000	42,000	
dE/dx [MeV/cm]	0.24	1.4	2.1	3.0	3.8	1.9
Scintillation λ [nm]	80	78	128	150	175	

Cryogenics + Recirculation System

LAr volume (mass)	550 liters (0.77 t)
Insulation	Vacuum Jacket (10 ⁻⁴ mbar)
	with SuperInsulation
Total Heat Load	pprox 120 W
Cooling	CryoCooler (330 W cool. capacity)
Ar Recondensation	LAr Flow Rate: $pprox$ 3 lt/hr
P, T (set point)	GAr P=2 psig, LAr T=88.4 K

- Cooling with 330W CryoCooler
- Electronegative impurities, like O₂ and H₂O attach drifting electrons weakening the signal on the wires.
- Their quantity in argon can be diminished by pushing the argon through filters.
- ► Used regenerated filters developed at Fermilab →

Nucl.Instrum.Meth.A605:306-311,2009

• Obtained sufficient purity (\simeq 700 μs) using gas recirculation (330 μs drift).

08/15/2013; DPF2013, Santa Cruz

Purity and Electron Lifetime

- Electron lifetime calculated using passing muons.
- Converts to O₂ concentration
- Recirculation in gas.
- G10 in gas causes problems due to water outgassing
- Lots of lessons learned that are beneficial to new projects.

LArSOFT structure

- LArSOFT is a software package developed for LArTPCs
- Detector agnostic
- Constructed from separate modules highly configurable

