

Searches for Dark Matter Annihilation in Dwarf Spheroidal Galaxies with the Fermi-LAT

Alex Drlica-Wagner on behalf of the Fermi-LAT Collaboration

> DPF 2013 Meeting August 15th, 2013

Results presented here are from Ph.D. dissertation (ref. [1])

Fermi-LAT Collaboration publication is forthcoming

Hunting for WIMPs

Indirect Detection

SLAC SLAC

Indirect Detection

Dwarf Spheroidal Satellite Galaxies

Dark Matter Content

 $\rho^2(r(l,\phi'))dl(r,\phi')$ $d\Omega'$ $\Delta\Omega(\phi, \theta)$ Jlos

- Dark matter content determined from stellar velocity dispersion
 - Classical dwarfs: spectra for several thousand stars
 - Ultra-faint dwarfs: spectra for fewer than 100 stars
- Fit stellar velocity distribution of each dwarf (assuming an NFW profile)
- Calculate the J-factor by integrating out to a radius of 0.5 deg (ref. [3])
 - Encloses the half-light radii of the dwarfs
 - Minimizes uncertainty in the J-factor
 - Large enough to be insensitive to the inner profile behavior (core vs. cusp)
- Include the J-factor uncertainty in the gamma-ray analysis

J-Factors for 18 Dwarf Galaxies

8

Dwarf Spheroidal Galaxies

STANFORD UNIVERSITY

SLAC KIPAC

LAT Count Maps

SLAC SLAC

Draco

Differential Sensitivity

Particle Spectrum

Indirect Detection

Joint Likelihood Analysis

Combined Limits at 95%CL

Expected vs. Observed Limits

STANFORD UNIVERSITY

SLAC KIPAC

Combined Limits at 95%CL

Statistical and Systematic Effects

 $\mathbf{T}_{\mathbf{S}}^{\mathbf{T}}$

- Distribution of TS values in the data does not follow asymptotic theorems
- Local significance:
 - Simulations: p-value = 1.6×10^{-3} (~2.9 σ)
- **Global significance:**
 - Simulations: p-value = 2.4×10^{-2} (~2.0 σ)
 - p-value = 8.3×10^{-2} (~1.4 σ) – Data:
- **Confounding features of the data:**
 - Unresolved background sources
 - Instrumental features
 - Imperfect modeling of the diffuse background
- Additional systematic uncertainties:
 - Instrument response (< 15%)
 - Diffuse backgrounds (< 10%)
 - Dark matter profile (< 20%)

Finding More Dwarf Galaxies

- The number of known dSphs has doubled due to SDSS.
 - SDSS only covers ~25% of the sky
 - SDSS has a magnitude limit of ~22
- New wide-field surveys plan to greatly expand our coverage:
 - Pan-STARRS:
 ~75% of the sky from the north
 - Southern Sky Survey:
 ~75% of the sky from the south
 - DES:
 ~5000 deg² in the south (deeper)
 - LSST:
 ~50% of the sky (much deeper)
- Eventually hope to be complete for all bound dwarf galaxies (L > 10² L_☉)
- Simulations predict hundreds of Milky Way satellite galaxies (ref. [4])

Finding More Dwarf Galaxies

- Conservatively assume that upcoming surveys find 20 more dwarf galaxies.
- Assume that the characteristics of these new galaxies are similar to those recently discovered by SDSS.
 - High Galactic Latitude
 - Comparable J-factors and uncertainties
- Combine additional dwarfs with continued LAT operations.
 - 10 years of LAT data taking
 - Current instrument performance
- Expect sensitivity to the thermal relic cross section for dark matter particles with masses ~350 GeV
- Additional improvements to the LAT instrument...

Only valid if systematics can be controlled

Pass8: Improved LAT Performance

- Improvements to the LAT instrument performance:
 - Increased energy range
 - Increased effective area
 - Improved angular resolution
 - Better background rejection
 - New event classes
- Impacts for dark matter:
 - Energy Range <==> explore new high-mass parameter space
 - Effective Area <==> increased flux sensitivity
 - Angular Resolution <==> greater sensitivity to spatially extended sources
 - New Event Classes <==> check systematic effects in event selection

- Drlica-Wagner, A. "Searching for Dwarf Spheroidal Galaxies and other Galactic Dark Matter Substructures with the Fermi Large Area Telescope." Stanford Ph.D. Thesis (2013)
- 2. Walker, M. et al. "Velocity Dispersions Profiles of Seven Dwarf Spheroidal Galaxies" Ap.J. 667:L53 (2007)
- 3. Martinez, G. et al. "Hierarchical Mass Modeling: An Improved Methodology to Robustly Determine Local Group Galaxy Properties." In preparation, (2013)
- 4. Tollerud et al. "Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function." Ap.J. 668:227 (2008)
- 5. Atwood et al. "Pass 8: Toward the Full Realization of the Fermi-LAT Scientific Potential" arXiv:1303.3514 (2012)