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Indirect Detection
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Indirect Detection
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(Bullock, Geha, Powell)
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Dwarf Spheroidal Satellite Galaxies

6

The Milky Way is 
surrounded by small 
satellite galaxies

D. Malin
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M. Geha

Close to Earth 
(25 kpc to 250 kpc)

Luminosities range 
from 107 L⊙ to 103 L⊙

Astrophysically 
inactive

Most dark matter 
dominated objects 
known



Moore (2009)

• Dark matter content determined from 
stellar velocity dispersion
– Classical dwarfs: spectra for several 

thousand stars
– Ultra-faint dwarfs: spectra for fewer 

than 100 stars
• Fit stellar velocity distribution of each 

dwarf (assuming an NFW profile)
• Calculate the J-factor by integrating 

out to a radius of 0.5 deg (ref. [3])
– Encloses the half-light radii of the 

dwarfs
– Minimizes uncertainty in the J-factor
– Large enough to be insensitive to the 

inner profile behavior (core vs. cusp)
• Include the J-factor uncertainty in the 

gamma-ray analysis
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dΦγ

dEγ
(Eγ ,φ, θ) =

1

4π

< σannv >

2m2
WIMP

�

f

dNf
γ

dEγ
Bf

×

�

∆Ω(φ,θ)
dΩ�

�

los
ρ2(r(l,φ�))dl(r,φ�)

No. 1, 2007 dSph VELOCITY DISPERSION PROFILES L55

TABLE 1
Summary of dSph Velocity Samples and NFW Parameters

Galaxy Nnew Ntot Ndsph b
Mvir

(107 M,)
Mrmax

(107 M,)
M600

(107 M,)

Carina . . . . . . . . 1833 2567 899 !0.5 20 3.5 2.0
Draco . . . . . . . . 512 738 413 !1 400 9.0 6.9
Fornax . . . . . . . 1924 2085 2008 !0.5 100 18 4.6
Leo I . . . . . . . . . 371 483 416 !0.5 100 7.3 4.5
Leo II . . . . . . . . 128 264 213 0 40 4.3 2.8
Sculptor . . . . . . 1089 1214 1091 !0.5 100 8.2 4.3
Sextans . . . . . . . 947 1032 504 !2 30 5.4 2.5

Fig. 2.—Left: Projected velocity dispersion profiles for seven Milky Way dSph satellites. Overplotted are profiles corresponding to mass-follows-light (King
1962) models (dashed lines; these fall to zero at the nominal “edge” of stellar distribution), and best-fitting NFW profiles that assume b p constant. Short, vertical
lines indicate luminous core radii (IH95). Distance moduli are adopted from Mateo (1998). Right: Solid lines represent density, mass, and profiles correspondingM/L
to best-fitting NFW profiles. Dotted lines in the top and middle panels are baryonic density and mass profiles, respectively, following from the assumption that
the stellar component (assumed to have ) has exponentially falling density with scale length given by IH95.M/L p 1

equal numbers of dSph members. Thus the number of stars,
including interlopers, in each bin may vary, but for all bins,

. We use a Gaussian maximum-likelihoodN 1/2bin ˆS P ∼ (N )ip1 dsph dsphi

method (see Walker et al. 2006a) to estimate the velocity dis-
persion within each bin.
Left-hand panels Figure 2 display the resulting velocity dis-

persion profiles, which generally are flat. The outer profile of
Draco shows no evidence for a rapidly falling dispersion, con-
trary to evidence presented by Wilkinson et al. (2004) but

consistent with the result of Muñoz et al. (2005).6 In fact the
outer profiles of Draco, Carina, and perhaps Sculptor show
gently rising dispersions. While it is likely that at least in Carina
this behavior is associated with the onset of tidal effects (Muñoz
et al. 2006), McConnachie et al. (2007) point out that the
tendency of some dSphs to have systematically smaller velocity
dispersions near their centers is perhaps the result of distinct
and poorly mixed stellar populations (Tolstoy et al. 2004; Bat-
taglia et al. 2006; Ibata et al. 2006). Either explanation com-
plicates a thorough kinematic analysis; in the present, simplified
analysis we assume all stars belong to a single population in
virial equilibrium.
Dashed lines in Figure 2 are velocity dispersion profiles

calculated for single-component King models (King 1962) con-
ventionally used to characterize dSph surface brightness pro-
files. The adopted King models are those fit by Irwin & Hatz-
idimitriou (1995, hereafter IH95) and normalized to match the

6 We have not included the unpublished data of Wilkinson et al. (2004) or
Muñoz et al. (2005) in our calculations of the velocity dispersion profiles of
Draco.

Walker et al. 2007 (ref. [2])
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NFW density profile
integrated over 0.5˚ cone
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18 dwarf galaxies have 
well-determined J-factors.
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Dwarf Spheroidal Galaxies
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LAT Count Maps
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PRELIMINARY
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Differential Sensitivity
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Constraints from the 
data on the flux in 
each energy bin

Range expected from
statistical fluctuations
(1000 simulations)
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(from ref. [1])
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Particle Spectrum
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Indirect Detection
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Particle Physics
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• Assume same dark matter particle in all dwarf 
spheroidal galaxies

• Use all dwarf galaxies with well-determined 
J-factors in non-overlapping regions (N=15)

• Perform a combined likelihood analysis:
– Predicted flux for each dwarf will depend on 

individual dark matter content (J-factor)
– Include statistical uncertainties from stellar 

kinematic data.
– Fit backgrounds independently

• Joint likelihood function:
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Joint Likelihood Analysis
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Combined Limits at 95%CL

15

15 dwarf galaxies

4 years of LAT data

Expected sensitivity 
calculated from 2000 sets 
of 15 realistic simulations

6 prototypical dark matter 
annihilation channels

Dark matter particle 
masses ranging from 
2 GeV to 10 TeV (when 
kinematically allowed)

(from ref. [1])

Simulations
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Expected vs. Observed Limits
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Combined Limits at 95%CL
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Expected sensitivity 
calculated from the data

300 sets of 15 
random sky 
locations

High-Galactic-
latitude (|b|>20)

>1˚ from LAT 
catalog sources

Reduces discrepancy 
between observations 
and expectations

Same observed limits
(from ref. [1])

Data
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Statistical and Systematic Effects

• Distribution of TS values in the data 
does not follow asymptotic theorems 

• Local significance:
– Simulations: p-value = 1.6x10-3 (~2.9σ)

• Global significance:
– Simulations: p-value = 2.4x10-2 (~2.0σ)
– Data:  m        p-value = 8.3x10-2 (~1.4σ)

• Confounding features of the data:
– Unresolved background sources
– Instrumental features
– Imperfect modeling of the diffuse 

background

• Additional systematic uncertainties:
– Instrument response (< 15%)
– Diffuse backgrounds (< 10%)
– Dark matter profile     (< 20%)

18

(from ref. [1])
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Finding More Dwarf Galaxies

• The number of known dSphs has 
doubled due to SDSS.
– SDSS only covers ~25% of the sky
– SDSS has a magnitude limit of ~22

• New wide-field surveys plan to greatly 
expand our coverage:
– Pan-STARRS:

 ~75% of the sky from the north
– Southern Sky Survey:

 ~75% of the sky from the south
– DES:

 ~5000 deg2 in the south (deeper)
– LSST:

 ~50% of the sky (much deeper)

• Eventually hope to be complete for all 
bound dwarf galaxies (L > 102 L⊙)

• Simulations predict hundreds of Milky 
Way satellite galaxies (ref. [4])

19Globular Cluster 47 Tuc (DES Collaboration)

DES Footprint
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Finding More Dwarf Galaxies

• Conservatively assume that upcoming 
surveys find 20 more dwarf galaxies.

• Assume that the characteristics of these 
new galaxies are similar to those 
recently discovered by SDSS.
– High Galactic Latitude
– Comparable J-factors and uncertainties

• Combine additional dwarfs with 
continued LAT operations.
– 10 years of LAT data taking
– Current instrument performance

• Expect sensitivity to the thermal relic 
cross section for dark matter particles 
with masses ~350 GeV

• Additional improvements to the LAT 
instrument...

20
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Pass8: Improved LAT Performance

21

5 Decades in Energy (3 TeV)

• Improvements to the LAT instrument 
performance:
– Increased energy range
– Increased effective area 
– Improved angular resolution 
– Better background rejection
– New event classes

• Impacts for dark matter:
– Energy Range <==> explore new 

high-mass parameter space
– Effective Area <==> increased flux 

sensitivity
– Angular Resolution <==> greater 

sensitivity to spatially extended 
sources

– New Event Classes <==> check 
systematic effects in event selection

Preliminary

(from ref. [5])
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