DES SCIENCE VERIFICATION

Marcelle Soares-Santos

DPF 2013 Santa Cruz August 16, 2013

TIMELINE

Construction: 2008–2011 Installation: Feb–Aug 2012

Commissioning: Sep–Oct 2012

Science Verification: Nov–Feb 2013

DES: next 5 years

CHARGE

- Required: Determine whether image data is being produced with sufficient quality and efficiency to meet the DES science goals.
- Goals: Exercise downstream analyses (DESDM) and determine whether quantities derived from image data are meeting DES requirements.
- Team: G. Bernstein (Penn), K. Honscheid (OSU)

Sevilla, Soares-Santos, Martini, Lin, Marriner, Flaugher, Armstrong, Tucker, Annis, Gruen, Patton, Suchyta, Kent, Melchior, Hao, Sako, Vikram, Rykoff, Jeltema, March, Reil, Roodman, Frieman, Petravick, Gruendl, Nord, Paech, Annis, Jarvis, Elliott, Neilsen, Regnault, Diehl, DePoy, Hofman, Gerdes, Szypniewski, Buckley-Geer, Ogando, Nichol, Old, Mccrann, Rooney, Helsby, Fausti, Serrano, Casas, Wester, Davis, Plazas Walker, Kunder, James, Abbott, Warner, Schumacher, Bonati, telescope support staff, and more

GOAL CATEGORIES

Categories: Signal & Noise

Signals and noise close to DES design Flux Calibration

Relative stellar photometry to 2% Astrometry

Stable solution with <100 mas accuracy Image Quality

No major degradation by any element

(automatic) focus < 50 μ m Pointing & Guiding

Sufficient to hit DES tilings Anomalies

Bad pixels, cosmic ray rate as expected Operations

Demonstrate operational readiness

Supernovae

Templates, Functional image subtraction pipeline

OBSERVING PLAN

Calibration

Bias Dome Flats Photometric Standards Engineering Hexapod LUT

Focus & Alignment

SN Fields

8 shallow

2 deep

u, Y for photo-z (VVDS)

Mini Surveys (100 deg²)

Stripe 82 SPT-W SPT-E/maxVis

OBSERVATIONS

Science Verification

November 1 – 24, 2012 Shared with Community SV

10, 366 Exposures

Very good weather

Issues with guiding

Issues with pointing

Issues with tracking (especially north) 3 rich galaxy clusters to survey depth

Extended SV

December 2 – February 23, 2013 Shared with Community Program 23,900 Exposures Decent weather Abandoned Mini Survey in North SPT-W, SPT-E (~150 sqdeg, survey depth) Continued SN Survey

OVERVIEW

SV Accomplishments

- Data flowing to NCSA
- First Cut Processing
- Verified proper signal and noise levels
- Astrometric solution with 20 mas RMS
- Fixed faulty primary mirror support
- OBSTAC runs properly
- SISPI (DAQ) works, improved
- AOS control of focus and collimation
- Look Up tables for pointing
- Cross talk measured, saturation detected
- Documentation
- Quick Reduce works, enhanced
- SN fields selected, templates
- SN pipeline works
- Photometric calibration regimen in place
- Repeatability to 0.02 mag verified
- Color terms as expected (except Y)
- Mirror cooling recommissioned
- RASICAM working
- Fringing measured, stable and small
- Detector non-linearities identified
- RA damper motor recommissioned
- Vastly improved tracking
- Ghost & scattering sources identified
- Photo-z calibration fields imaged
- BCAMS operating
- ... and more ...

SV Data Products

- 5 cluster fields observed Nov/Dec Good seeing Bright moon
- COSMOS field (shared with community)
 Depth well beyond DES needs
- >1000 exposures of standard star fields
- 8 shallow and 2 deep SN fields
- SPT-W field ($\sim 60 \text{ deg}^2$)
- SPE-E field observed in Jan- Mar Seeing <1.3", ~150 deg², 10 tilings Homogeneous depth Nominal moon for each filter

EYEBALL SQUAD

The EyeBall Squad visually inspected ~3000 frames from Science Verification - checking image quality and searching for evidence of electronic, optical or tracking issues.

With thanks to: Leon Baruah Emma Beynon Heather Campbell Diego Capozzi Mark Carter Lucy Clerkin Chris D'Andrea **James Etherington** Daniel Gruen John Katsaros Rebecca Kennedy Lyndsay Old Andreas Papadopoplous Andrés Plazas Malagón **Rhys Poulton** Tom Rigby Kathy Romer Philip Rooney Harry Wilcox **Rob Williams**

M. March (Sussex)

GUIDER JUMPS

SIGNAL TO NOISE

Sig-R2 grizY zeropoints within 0.05 mag of expectation

Sig-R3 Sky brightness within 0.1 mag of expectations

Sig-R4 OBSTAC to use observed sky brightness

Sky noticeably brighter within 45° of the moon (as expected)

ASTROMETRY

Ast-R1 WCS in raw image files better than 1" for all CCDs

(Pointing accuracy, Calculations done) Pointing Model Survey procedures

Ast-R2 Large dither observations repeatable to <100 mas median absolute

Ast-R3, Cal-G2 No systematic anomalies above 50 20 mas (e.g. glowing edges are the expected size, stable CCD position etc)

Cal-G1 Bright star relative sky position reproducible with < 25 mas median absolute error Procedure: ~20x50s dithered exposures Generate instrumental astrometric solution in each filter Add quadratic sky distortion Evaluate errors using distinct bright stars

~100 exposures, value of astrometric correlation function at separation of 1 arcmin

(R. Armstrong)

PHOTOMETRY

Nightly Standard Star Solution in g-band for the First Night of SV

Magnitude Residuals vs. Position on Focal Plane

Night: 20121101 Filter: g RMS: 1.4%! D. Tucker 17,000 (combined internal and absolute calibration) 16,000 15,000 14,000 Night: 20121101 Filter: g 13,000 12,000 0.05 11,000 0.04 10,000 0.03 9,000 0.02 8,000 mag residual 0.01 7,000 0.00 6,000 -0.01 5.000 -0.02 4,000 3,000 -0.03 2.000 -0.04 1,000 -0.05 15.0 15.5 16.0 16.5 17.0 17.5 18.0 -1,000 mag -2,000 -3,000 -4,000 Night: 20121101 Filter: g -5,000 0.05 -6,000 0.04 -7,000 0.03 -8,000 0.02 -9,000 residual 0.01 -10,000 0.00 -11,000 mag -12,000 -0.01 -13,000 -0.02 -14,000 -0.03 -0.1 mag +0.1 mag -15,000 -0.04 -16,000 -0.05 -17,000 +0.1 +0.06 +0.08 -0.50 -0.25 0.00 0.25 0.75 1.00 1.25 1.50 1.75 0.50 g-r Marcelle Soares-Santos

DES SV

DPF Meeting

Aug 16 2013

PHOTOMETRY

Cal-R1 Relative magnitudes of bright stars reducible to <0.02 mag

Cal-R2 Color terms of DES vs SDSS _ photometry are within 2% of prediction

Cal-R3 Color terms of DES vs UKIDS photometry are within 4% of prediction R3 \rightarrow not yet in Y. need DECal

Cal-R4 Ratio of dome flat to twilight flat is constant to 1%

Cal-R5, Cal-G6 Time variability of Y band fringes has been studied. Fringes removable without traces

Cal-R7 Unsaturated exposures of BD+17 in all filters. Shutter-timing error <1%

SN SURVEY

SN-R1 All SN field observed multiple times. 95% complete star catalog

SN-R2 Stacked templates for all fields. Stacked stellar signal studies.

SN-R5 Difference imaging at DES-DM

SN-R6 Select SN candidates for Spectroscopic follow up

SN-R7 Reduce SN observations In < 24 hours

OPERATIONS

Ops-R1 OBSTAC works Switch between main and SN survey Feedback into Survey Table

Ops-R2 Run Manager

Ops-R3 Calibration Plan

Ops-R9 Routine operations DAQ, Procedures, Shifts

Data Transfer no problems!!

DES DM Processing First Cut, SN Pipeline

SUPPORT

SUMMARY

DECam works very well

0.7" images, No Surprises Routine Operation

Science Verification:

Signal/Noise, Photometry, Astrometry, Survey Tools, Photo-z, SN Program, Operations/Procedures at or near DES requirements

darkenergysurvey.org

