Can we do lensing with DECam?

Eric Suchyta

Bob Armstrong Elisabeth Krause David Bacon Huan Lin Keith Bechtol Peter Melchior (lead) Sarah Bridle Niall McCrann Fabrice Brimioulle Ken Patton Joseph Clampitt Andres Plazas Daniel Gruen Barnaby Rowe Michael Hirsch Eduardo Rozo Klaus Honscheid Eli Rykoff Eric Huff Stella Seitz Bhuv Jain Rafal Szepietowski Mike Jarvis Vinu Vikram Stephanie Jouvel Harry Wilcox Tomasz Kacprzak Julia Young ... and the DES SV squad

Clusters in Science Verification

1. validate the data quality delivered by DECam for the purpose of galaxy cluster and lensing studies

2. utilize the large FoV of
DECam to create light and
mass maps over more than
2 square degrees around
massive clusters

Early data issues

November 2012:

- early data affected by "guider jumps"
- tracking performance not as desired

Early data issues

November 2012:

- early data affected by "guider jumps"
- tracking performance not as desired

Early data issues

November 2012:

- early data affected by "guider jumps"
- tracking performance not as desired

December 2012: clearly improved image quality

PSF modeling

Cluster lensing sketch

Cluster lensing in (HST) reality

From strong to weak lensing

Shear = tangential orientation

Several methods:

- KSB
- shapelet
- DEIMOS
- im3shape

 $n_{gal} \sim 15$ / sq. arcmin

Photometric catalogs

Color Cuts: Fg

Color Cuts: Bg

1.5

2

Foreground / Background selection based on color cuts and photo-zs

Cluster member selection

RedMaPPer:

red-sequence cluster finder

knowing the redshift, it can map galaxies that look like cluster members

Mass & light maps

SaWLens WL mass reconstruction

redMaPPer galaxy distribution at z=0.35

Mass & light maps

SaWLens WL mass reconstruction

redMaPPer galaxy distribution at z=0.35

Mass & light maps

Summary/Outlook

- DECam data has improved considerably
- Testing many, many systematic we have learned valuable lessons to improve our lensing measurements

Remaining Work

- Analyze more clusters to improve our limited statistics (5 done so far)
- Some difficulties of shear under-measurement in the most massive clusters ~10¹⁵ M_{solar}
- Indications of flux-dependent PSF, understand this
- Paper in prep

Extra Slides

Shear deficit near center for ~10¹⁵ M_{solar} clusters

Shear profile comparison to external data

Shear profile under different selections

Profile of galaxies with shape measurements

Stacked number density profiles

Flux dependent PSF

Cerro Tololo Inter-American Observatory

3

11 11 2 191

Survey characteristics

5000 sq. degrees filters: grizY + U 10 x 90 seconds limiting magnitudes: 25.2 (g) .. 23.4 (z)

single i-band exposure

Swarp: median coadd of 10 exp. $n_{gal} = 21 / sq. arcmin$ mean coadd+outlier rejection $n_{gal} = 25 / sq.$ arcmin

- ► KSB
- ► shapelet
- ► DEIMOS
- im3shape

Cluster member selection

based on color cuts and redMaPPer

