LYSO Crystal Calorimeter in Mu2e Experiment

Chih-hsiang Cheng Caltech For the Mu2e Collaboration

DPF2013, Santa Cruz, California 2013/08/16

Charged lepton flavor violation

- Charged lepton flavor violation in the Standard Model is not detectable.
- Many new physics models could enhance the rate to detectable level. Observation of CLFV is a clear sign of new physics.

Muon to electron conversion

- Muon stopped and captured by a nucleus.
- Signal to search for: mono-energetic electron (neutrinoless) with $E_e = m_\mu E_{\text{binding}} E_{\text{recoil.}}$
- For Al²⁷ target, E_e =104.96 MeV.
- Goal of MuzeN $\rightarrow e^- N$

 $R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \text{all muon captures})}$

 $< 6 \times 10^{-17}$ limit at 90% C.L.

Muon to electron conversion

- Muon stopped and captured by a nucleus.
- Signal to search for: mono-energetic electron (neutrinoless) with $E_e = m_\mu E_{\text{binding}} E_{\text{recoil.}}$
- For Al²⁷ target, E_e =104.96 MeV.
- Goal of MuzeN $\rightarrow e^- N$

 $R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \text{all muon captures})}$

 $< 6 \times 10^{-17}$ limit at 90% C.L.

anta Oruz Beach

 $\mathcal{L}_{\text{CLFV}} = rac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu}$ + $\frac{\kappa}{(1+\kappa)\Lambda^2}\bar{\mu}_L\gamma_\mu e_L(\bar{u}_L\gamma_\mu u_L + \bar{d}_L\gamma_\mu d_L)$ $B(\mu \rightarrow e \text{ conv in }^{27}\text{Al})=10^{-17}$

Harder than searching for a grain of sand on Santa Cruz beach

(not including the muons we make but don't stop, another factor of ~thousand)

(TeV)

10 -2

10⁻¹

10

10

Santa Cruz Wh

Mu2e experiment

4

Detecting 1 out of >10¹⁷

Role of calorimeter

- Confirm a reconstructed track is well measured.
- Capable of providing seeds for track reconstruction.
- Trigger capability.
- Particle identification.
- Requires:
 - ✦ Good energy resolution so that there's no significant decay-in-orbit background in the signal region.
 - Good timing (<1 ns) and spatial (≤ 1 cm) resolution.
 - ◆ Radiation hard (≈80 Gy/year).
 - ✦ Operable in 1-T magnetic field.
 - ✦ Efficient trigger/filter ability ~few kHz.

LYSO Crystal

• LYSO (lutetium-yttrium oxyorthosilicate [Cerium doped]) crystal is chosen in the baseline design.

	Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂	LYSO
-8-	Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77	
	Melting Point (°C)	651	621	621	1280	1050	2050	1123	824	high melting point
-0-	Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93	small Xo
	Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21	~small Moliere Radius
	Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0	
	Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82	
	Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No	non-hygroscopic
m-	Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?	
	Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?	fast
	Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?	bright
	d(LY)/dT ^ь (%/ °C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?	
	Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	KLOE-2 SuperB SLHC?	CMS ALICE PANDA	HHCAL?	

NaI(Tl) light yield ~40000/MeV

radiation hard

LYSO scintillation property

Radiation hardness

- ~10% loss of light after 1 Mrad (=10 kGy, ~50x expected dose in Mu2e) γ-ray irradiation.
 - slow recovery at room temperature;
 - ★ can be cured by thermal annealing at 300°C for 10 hours.

Photo-luminescence weighted longitudinal transmittance =

 $\int Em(\lambda)d$

Detector layout

Baseline design

- Two disks consist of ~2000 haxagonal (or square) LYSO crystals.
 - ✦ Separation ~70 cm.
 - ✤ Inner/outer radii: 36-39/64-67 cm.
- 3×3×11 cm³ each crystal.
- Two 1×1 cm² APDs/crystal
- Many other issues to be resolved:
 - Wrapping, and structure (if any)
 - Linearization of response
 - Photosensor mounting
 - Preamp/HV config

Detailed Geant4 simulation down to optical photon transport is underway

Energy resolution in simulation

• Geant4 simulation (signal electrons), including muon decay-in-orbit, neutron background, but *not* light collection, non-linearity, electronic noise, ...

More studies with better estimated background and additional noise contributions are ongoing.

Particle identification

• Reject cosmic-induced background

- Greatly improve muon rejection from tracker-only algorithm.
 - + Tracker only: $\epsilon_e \sim 92\%$, muon rejection ~ 5 .
 - Calorimeter+Tracker: $\epsilon_e > 99\%$, muon rejection ~10²-10³.

Calorimeter based trigger

• Trigger events with a cluster energy above a certain threshold.

- @64 MeV (for example),
 - + efficiency ~91%
 - reduce the DIO rate to <10 kHz.
- Efficiency/rejection depends on energy resolution.

Shown are simulations with "vanes" configuration. Will repeat the study with "disks" configuration

Photosensors

- Large area APD (10×10 mm²). Two/crystal.
 - ✦ functional in 1-T field
 - ✤ fast/proportional response
 - ◆ gain from 50 to 1000
 - large collection and quantum efficiencies.
- New preamplifier design, <50 keV noise, integrated HV linear regulator on board.

• Alternative: Large Area SIPM

Beam test at MAMI

Test Beam (2011) at MAMI (Mainz Microtron, Germany) with a clean tagged photon.

- An inner matrix of 9 LYSO crystals
 - LYSO from SICCAS High Technology Co. (Shanghai)
 - ◆ 20×20×150 mm³
 - readout by 10×10 mm² APDs Hamamatsu S8664-1010
- An outer matrix of 8 PbWO4
 - for leakage recovery
 - ★ 30×30 (or 40×40) ×130 mm³
 - readout by 1 inch PMTs.
- Independently wrapped with 300 µm reflecting Tyvek + black tape.

Beam test prototype

Beam test results

Emission and transmission test stand

Will build an automatic system to scan each crystals, and devise a strategy to improve light response uniformity: Roughening surfaces, black paint, or tape...

• Irradiated fluorine:

$${}^{19}F + n \rightarrow {}^{16}N + \alpha$$

$${}^{16}N \rightarrow {}^{16}O^* + \beta \quad (\tau_{1/2} = 7 s)$$

$${}^{16}O^* \rightarrow {}^{16}O + \gamma \ (6 \ 13 \ MeV)$$

 crystal-by-crystal absolute calibration; performed once (~30 min.) per ~week.

*In addition to calibrations using cosmic rays, DIO, Michel edge, and/or $\pi^+ \rightarrow e^+ v$ mono-energetic positron.

Laser calibration system

• Monitor the variation of the crystal optical transmittance and APD gains. Similar to the one used for CMS.

400 µm²

Design and tests of the system (light pulser, fibers, photosensors, etc.) are ongoing.

Prototype under development; will test for the next test beam.

Conclusions and future work

- We have established the baseline design of the Mu2e calorimeter:
 - Two disks of LYSO crystals + APD photosensors
 - ✦ Hexagonal cross-sectic
- Exact geometry (radii, mechanics, photosenso optimized.

- Next beam test with 5×5 array of 3×3×13 cm³ crystals (@LNF then
 - better shower contai
 - reduce/eliminate str
 - better care of light reaction
 - ✤ new electronics/digi

