$B \to \overline{D}^{(*)} \tau \nu$ and Constraints on Charged Higgs Models

Presented at DPF 2013, August 13-17, on behalf of the BABAR Collaboration by

Daniel Chao Caltech

OUTLINE

• Introduction

- Analysis Methodology
 - Event Selection
 - Yield Extraction
 - Systematic Uncertainties
- Results
- Comparison with the Standard Model
- Comparison with Charged Higgs Models
- Conclusion

INTRODUCTION

- The $B \to \overline{D}^{(*)} \tau \nu_{\tau}$ decay is sensitive to New Physics at tree level in the form of a charged Higgs boson.
- Using the large sample of B mesons collected at BABAR, we measure the quantity:

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(B \to \overline{D}^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to \overline{D}^{(*)} \ell \nu_{\ell})}$$

- Theoretical uncertainties on $\mathcal{R}(D^{(*)})$ are reasonably small and well understood in the Standard Model (SM).
- Systematic uncertainties of the experiment cancel in this ratio.

DANIEL CHAO, CALTECH

EVENT SELECTION

 $S = D, D^*, D_s, \text{ or } D_s^*$ $X^{\pm} = \text{ up to 5 } \pi, K, \pi^0, \text{ or } K_S^0$

- For each event, we reconstruct all possible $B_{tag}D^{(*)}\ell$ candidates.
- We then choose the lowest E_{extra} candidate to represent the event, where E_{extra} is defined to be the energy sum of all photons that are not part of the reconstructed candidate.
- The signal efficiency is 3 times larger than the previous *BABAR* analysis, *Phys. Rev. Lett. 100, 021801 (2008)*.
 - More modes are reconstructed for the seed meson S.
 - Improved lepton PID for ℓ .

EVENT SELECTION

- At this point, each event belongs to one of four samples: $D^0\ell$, $D^{*0}\ell$, $D^+\ell$, and $D^{*+}\ell$. This group is referred to as the $D^{(*)}\ell$ samples.
- In order to constrain the large D^{**} background, we also reconstruct $D^0\pi^0\ell$, $D^{*0}\pi^0\ell$, $D^+\pi^0\ell$, and $D^{*+}\pi^0\ell$ control samples. They are referred to as the $D^{(*)}\pi^0\ell$ samples.
 - For each sample in $D^{(*)}\ell$, we separate out a subset of events that can be combined with a well reconstructed π^0 .

EVENT SELECTION

- Each event belongs to one of the following categories:
 - $D^{(*)}\tau$: Signal
 - $D^{(*)}\ell$: Normalization
 - $D^{**}(\ell/\tau)$: D^{**} background.
 - $B\overline{B}$ and continuum backgrounds.
- For each of the $D^{(*)}\ell$ samples, we train a boosted decision tree to separate out signal and normalization events and to reject background events.
- For each of the $D^{(*)}\pi^0\ell$ samples, we train a boosted decision tree to separate out D^{**} events and to reject others.

YIELD EXTRACTION

- To extract the signal and normalization yields, we perform an unbinned extended maximum likelihood fit to the 2D distribution in $m_{miss}^2 \operatorname{vs} |\boldsymbol{p}_{\ell}^*|$.
- Each sample has contribution from all event types. For each such contribution, we estimate its distribution in $m_{miss}^2 \operatorname{vs} |\boldsymbol{p}_\ell^*|$ using non-parametric kernel estimators.

DANIEL CHAO, CALTECH

 $\mathrm{DPF}\ 2013$

YIELD EXTRACTION

- The fit is performed on all $D^{(*)}\ell$ and $D^{(*)}\pi^0\ell$ samples simultaneously.
- The fit gives us the number of signal and normalization events selected. We then compute the desired quantity:

$$\mathcal{R}(D^{(*)}) = \frac{N_{\mathrm{sig}}}{N_{\mathrm{norm}}} \frac{\varepsilon_{\mathrm{norm}}}{\varepsilon_{\mathrm{sig}}}$$

 $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$ is the ratio of efficiencies taken from Monte Carlo.

Systematic Uncertainties

- To assess the impact of systematic uncertainties, we vary each source following a certain distribution and repeat the fit for each such variation. The uncertainty is assigned to be the standard deviation of the resulting $\mathcal{R}(D^{(*)})$ values.
- There are two types of systematic uncertainties:
 - Additive: These affect the yield of the fits, which influence the significance.
 - Monte Carlo (MC) statistics to estimate PDF shapes.
 - Fit constraints for fixing backgrounds and cross-feed contributions. The dominant source comes from D^{**} cross-feed constraints.
 - Multiplicative: These affect the $\varepsilon_{norm}/\varepsilon_{sig}$ ratio and do not affect the significance.
 - MC statistics is the dominant source of uncertainty.

Systematic Uncertainties

- The impact on the uncertainty of $\mathcal{R}(D^{(*)})$ due to correlations between any pair of systematic sources is small.
- However, the correlation between the uncertainties of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ is large.
 - For each source of uncertainty, its contribution to the total correlation is estimated from the 2D $\mathcal{R}(D)$ vs $\mathcal{R}(D^*)$ distribution that results from the fit variations.
 - Since each source of uncertainty is uncorrelated, we add their covariance matrices to estimate the total covariance.

Results: Fit yields and marginal Distributions for the $D^{(*)}\pi^0\ell$ sample

Phys. Rev. Lett. 109, 101802 (2013) + *follow up submission to PRD*

RESULTS: FIT YIELDS AND MARGINAL DISTRIBUTIONS FOR THE $D^{(*)}\ell$ SAMPLE

COMPARISON WITH THE STANDARD MODEL Phys. Rev. Let

Phys. Rev. Lett. 109, 101802 (2013) + *follow up submission to PRD*

- We compare our results to those predicted in the Standard Model (SM), and find that $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ are in excess over the SM predictions at the level of 2.0σ and 2.7σ respectively.
- We perform a χ^2 test between the theory and experimental result using the covariance matrices determined previously and find that the possibility of both measurements agreeing with the SM is excluded at the 3.4 σ level.

COMPARISON WITH TYPE-II 2HDM

• In the type-II 2HDM, $\mathcal{R}(D)$ is affected as a function of $\tan \beta / m_{H^+}$ as follows:

$$\mathcal{R}(D^{(*)})_{2\text{HDM}} = \mathcal{R}(D^{(*)})_{\text{SM}} + A_{D^{(*)}} \frac{\tan^2\beta}{m_{H^+}^2} + B_{D^{(*)}} \frac{\tan^4\beta}{m_{H^+}^4}$$

• The presence of a charged Higgs can affect the m_{miss}^2 and $|\mathbf{p}_{\ell}^*|$ signal distributions significantly. We assess and account for its impact as a function of $\tan \beta/m_{H^+}$ in order to examine whether the observed excess is consistent with the type-II 2HDM.

DANIEL CHAO, CALTECH

 $\mathrm{DPF}\ 2013$

COMPARISON WITH TYPE-II 2HDM

• We exclude the type-II 2HDM at 99.8% confidence level in the full tan $\beta - m_{H^+}$ parameter space.

COMPARISON WITH TYPE-III 2HDM

• In the type-III 2HDM, a right handed current is included in the effective Hamiltonian. The relative contributions between left and right handed current are parameterized with S_L and S_R .

• In this model, $\mathcal{R}(D^{(*)})$ take the form:

$$\mathcal{R}(D) = \mathcal{R}(D)_{\rm SM} + A'_D \operatorname{Re}(S_R + S_L) + B'_D |S_R + S_L|^2,$$

$$\mathcal{R}(D^*) = \mathcal{R}(D^*)_{\rm SM} + A'_{D^*} \operatorname{Re}(S_R - S_L) + B'_{D^*} |S_R - S_L|^2.$$

• We extrapolate the measured results obtained for $\mathcal{R}(D^{(*)})$ from the type-II 2HDM to the type-III 2HDM. For real values of S_L and S_R , we find 4 favored solutions.

DANIEL CHAO, CALTECH

 $\mathrm{DPF}\ 2013$

COMPARISON WITH TYPE-III 2HDM

• We compare the q^2 distribution of background subtracted data for three values of $\tan \beta / m_{H^+}$.

• $\tan \beta / m_{H^+} = 0.45 \,\text{GeV}^{-1}$ corresponds to the value of $S_L + S_R \sim 1.5$. We exclude the bottom 2 solutions at 2.9σ .

17

DANIEL CHAO, CALTECH

CONCLUSION

• We have measured the ratios $\mathcal{R}(D^{(*)})$ based on the full *BABAR* data sample:

 $\mathcal{R}(D) = 0.440 \pm 0.058 \pm 0.042$ $\mathcal{R}(D^*) = 0.332 \pm 0.024 \pm 0.018$

- $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ exceed the SM predictions by 2.0σ and 2.7σ respectively. Taken together, they disagree with the SM at the 3.4σ level.
- We exclude the entire type-II 2HDM parameter space at the 99.8% confidence level.
- More general charged Higgs models are compatible with our results. For instance, the type-III 2HDM is compatible with these results in regions where $|S_L + S_R| < 1.4$.
- Updated results from Belle are expected soon.
- For more details on this analysis, please refer to *Phys. Rev. Lett. 109, 101802 (2012) or arxiv: 1303.0571 (submitted to PRD).*