Recent |Vub| results from semi-leptonic B decays at BABAR

Biplab Dey

on behalf of the BABAR Collaboration

DPF 2013 Meeting, UC Santa Cruz

August 15th, 2013

1 / 16

< **≥** > < **≥** > August 15th, 2013

UC RIVERSITY OF CALIFORNIA

Biplab Dey (UCR/SLAC)

DPF'13, UCSC

The CKM Matrix and the role of $|V_{ub}|$

$$V_{\mathsf{CKM}} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

h

- In the SM, CKM matrix \Rightarrow flavor-mixing
- $|V_{ub}|$ is one of the smallest and most difficult elements to measure

- Unitarity triangle: side opposite to angle β is $\propto |V_{ub}|/|V_{cb}|$
- Both β and $|V_{cb}|$ known to better than 3%
- Measurement of |V_{ub}| places strong constraints on CKM framework

Semi-leptonic B decays

- Cleanest source of $B\overline{B}$ pairs for studying SL *B* decays: $e^+e^- \rightarrow \Upsilon(4S) \stackrel{>96\%}{\rightarrow} B\overline{B}, \sqrt{s} = 10.58 \text{ GeV}$
- PEP-II collider and **BABAR** detector: asymmetric e^+e^- B-factory at SLAC.
- Full "on-peak" dataset: \sim 470 M $B\overline{B}$
- Inital 4-momentum fully known. Tag the "other" B, to reconstruct B_{sig}
- Two discriminating variables:

$$\Delta E = E_B^* - \sqrt{s}/2$$
 (~ 0 for signal)
 $m_{\rm ES} = \sqrt{s/4 - |\vec{p}_B^*|^2}$ (~ m_B for signal)

Inclusive $B \to X_u \ell \nu$ with s_{H}^{MAX} cut (untagged)

- Challenge: 50× larger $B \to X_c \ell \nu$ background
- $\sqrt{q^2} \Rightarrow W^*(\ell \overline{
 u}_\ell)$ mass; $E_\ell \Rightarrow$ lepton energy
- $s_h^{\text{max}} \equiv m_X^2 < 3.52 \text{ GeV}^2$: remove dominant charm background in $m_X > m_D$
 - Update on PRL 95 111801 (2005): full dataset, improved D^{*}ℓν suppression (neural net cut) and systematics

• For
$$E_e^* > 2$$
 GeV, $s_h^{max*} < 3.5$ GeV²:

$$\Delta \mathcal{B} = \left(3.98 \pm 0.22 \Big|_{stat} {}^{+0.27}_{-0.20} \Big|_{sys} {}^{+0.17}_{-0.05} \Big|_{th} \right) \times 10^{-4}$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 15th, 2013 4 / 16

EXTRACTION OF $|V_{ub}|$

- To get $|V_{ub}|$ from partial BF: $|V_{ub}| = \sqrt{\Delta B / (\tau_B \Delta \Gamma_{\text{theory}})}$
- Several QCD calculations available for $d\Gamma/(dE_{\ell}^*dq^2dm_X)$: BLNP (NPB 699,335 (2004)) GGOU (JHEP 0710,058 (2007)) DGE (JHEP 0601,096 (2006)) ADFR (EPJC 59,831 (2009))

Measurement	<i>V_{ub}</i> (10 ⁻³)				
	BLNP	GGOU	DGE	ADFR	
BABAR (E_e^*, s_h^{max}) (2005)	$4.66\pm0.31^{+0.31}_{-0.36}$	-	$4.32\pm0.29^{+0.24}_{-0.29}$	$3.82\pm0.26^{+0.17}_{-0.18}$	
BABAR (E_e^*, s_h^{max}) (2013)	$4.44^{+0.16}_{-0.21}\pm0.31$	-	$4.11\substack{+0.15+0.23\\-0.20-0.27}$	$3.62^{+0.13}_{-0.18}\pm0.17$	
BABAR $\frac{\text{tagged}}{(m_X, q^2)}$ (2012)	$4.28\pm0.24^{+0.09}_{-0.11}$	$4.35\pm0.24^{+0.09}_{-0.11}$	$4.40\pm0.24^{+0.12}_{-0.13}$	$4.29\pm0.24^{+0.18}_{-0.19}$	
$Belle \frac{\text{tagged}}{(m_X, q^2)} (2010)$	$4.47\pm0.27^{+0.19}_{-0.21}$	$4.54\pm0.27^{+0.10}_{-0.11}$	$4.60\pm0.27^{+0.11}_{-0.13}$	$4.48\pm0.30^{+0.19}_{-0.19}$	

- New BABAR untagged E_e - s_h^{max} results to be submitted to PRD
- Consistent with hadronic tagged $(p_\ell^*>1$ GeV, 2-D fit in $(m_X,q^2))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

INCLUSIVE $|V_{ub}|$ SUMMARY

- Best measurements (Belle and BABAR) from hadronic tag
- Arithmetic average over 4 QCD calculations:

 $|V_{ub}|_{
m incl} = (4.41 \pm 0.15_{
m exp} \pm 0.17_{
m th}) imes 10^{-4}$

• Systematic errors mostly from $B \to X_u \ell \nu$ and background Monte Carlo simulations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

EXCLUSIVE $B \to {\pi, \omega} \ell \nu$ and form-factors

- Leptonic (L_{μ}) and hadronic (H_{μ}) sides factorize
- Vector-meson: 3 helicity amplitudes H_{0,±} and 3 form-factors (A₁, A₂, V)
 - Pseudo-scalars: single H_0 amplitude, 1 FF (f_+)
 - Theory predictions of FF's based on: quark models, light cone sum rules (LCSR), lattice calculations, with different q^2 regions of validity.
 - Model-independent series expansions from dispersion relations \Rightarrow data-driven way to fix q^2 dependence

イロト 不得 とうせい かほとう ほ

UNTAGGED $B \rightarrow \pi \ell \nu$ prd 86, 092004 (2012)

- Update on PRD 83, 052011 (2011): full dataset, improvement at high q^2
- $Y \equiv (\pi \ell)$ and c.m. frame variable: $\cos \theta_{\text{BY}} = \frac{2E_B E_Y m_B^2 m_Y^2}{2|\vec{p}_B||\vec{p}_Y|}$
- Loose ν reconstruction: $|\cos \theta_{\text{BY}}| \le 1$;
- Combined fit to π^+ and π^0 samples assuming isospin relations
- $m_{\rm ES}$ - ΔE - q^2 fits using signal + 5 background categories of PDF's from MC

UNTAGGED $B \to \pi \ell \nu$ prd **86**, 092004 (2012) (CNTD.)

• π^+/π^0 combined fit projections:

• Isospin-constrained:

$$\mathcal{B}(B
ightarrow \pi\ell
u) = (1.45\pm0.04_{ ext{stat}}\pm0.06_{ ext{sys}}) imes10^{-4}$$

Biplab Dey (UCR/SLAC)

August 15th, 2013 9 / 16

< □ > <

BCL EXPANSION FIT

BCL (Bourrely *et al.*, PRD **79**, 013008 (2009)) simple pole form:

$$f_+(q^2) = rac{1}{1-q^2/m_{B^*}^2} \sum_k^{k_{ ext{max}}} ilde{a}_k z^k(q^2)$$

• Measured data \Rightarrow shape. Normalization towards q_{max}^2 from LQCD (only 4/12 points)

$$|V_{ub}|_{\rm fit} = (3.28 \pm 0.29) \times 10^{-3}$$

BABAR PRD 83, 032007 (2011) Belle PRD 83, 071101 (2011) BABAR PRD 86, 092004 (2012) Belle arXiv:1306.2781 (2013)

< ロ > < 同 > < 回 > < 回 >

• Compare $f_+(0)_{\text{fit}} = 0.28 \pm 0.03$ with $f_+(0)_{\text{LCSR}} = 0.28 \pm 0.02$

Biplab Dey (UCR/SLAC)

August 15th, 2013 1

10 / 16

Exclusive $B \rightarrow \{\pi, \omega\} \ell \nu$ (full BABAR dataset)

$|V_{ub}|$ summary for $B \to \pi \ell \nu$

Form-factor calculations

- 1 LCSR, Khodjamirian et al., PRD 83, 094031 (2011)
- 2 HPQCD (lattice), PRD 73 074502 (2005)
- 3 FNAL/MILC (lattice), PRD 79, 054507 (2009)

Maaguramant	LCSR ¹	HPQCD ²	FNAL/MILC ³ fit			
Weasurement	$q^2 \in [0,12]~{ m GeV^2}$	$q^2 \in [16,26.4]~\mathrm{GeV^2}$	$q^2 \in [16,26.4]~\mathrm{GeV^2}$			
$ V_{ub} $ (10 ⁻³)						
BABAR 6 q^2 -bins (2011)	$3.54 \pm 0.12^{+0.38}_{-0.33}$	$3.22\pm0.15^{+0.55}_{-0.37}$	2.98 ± 0.31			
BABAR 12 q ² -bins (2011)	$3.46\pm0.10^{+0.37}_{-0.32}$	$3.26\pm0.19^{+0.56}_{-0.37}$	3.22 ± 0.31			
BABAR 12 q ² -bins (2012)	$3.46\pm0.10^{+0.37}_{-0.32}$	$3.47\pm0.13^{+0.60}_{-0.39}$	3.25 ± 0.31			
Belle 13 <i>q</i> ² -bins (2011)	$3.44 \pm 0.10^{+0.37}_{-0.32}$	$3.60\pm0.13^{+0.61}_{-0.41}$	$\textbf{3.43} \pm \textbf{0.33}$			
Avg. untagged	$3.47 \pm 0.06^{+0.37}_{-0.32}$	$3.43 \pm 0.09^{+0.59}_{-0.39}$	3.21 ± 0.31			
Belle hadronic tag (2013)	$3.40\pm0.16^{+0.37}_{-0.32}$	$3.81 \pm 0.24 \substack{+0.66 \\ -0.43}$	3.52 ± 0.29			

• Untagged $B \to \pi \ell \nu$ measurements still the most precise for exclusive $|V_{ub}|$. Error dominated by theory uncertainties.

Biplab Dey (UCR/SLAC)

DPF'13, UCSC

August 15th, 2013

11 / 16

UNTAGGED $B \rightarrow \omega \ell \nu$ prd 87, 032004 (2013)

- New untagged on full BABAR dataset, with $-1.2 < \cos heta_{
 m BY} < 1.1$
- Neural network based selection for $q\overline{q}$ and $B \rightarrow X_c \ell \nu$ suppression
- Binned LH fit in 5 q^2 and 20 ΔE - $m_{\rm ES}$ bins
- Combinatoric BG *fixed* using $m_{3\pi}$ sidebands in Data

 $\mathcal{B}(B
ightarrow \omega \ell
u) = (1.21 \pm 0.14_{ ext{stat}} \pm 0.08_{ ext{sys}}) imes 10^{-4}$

Biplab Dey (UCR/SLAC)

August 15th, 2013 12 / 16

Semi-leptonically tagged $B \to \omega \ell \nu$ (new!)

• Both B's decay semi-leptonically:

 $B_{\text{tag}} \rightarrow Y \nu, \ Y \equiv D^{(*)}\ell; \ B_{\text{sig}} \rightarrow X \nu, \ X \equiv \omega \ell$

- θ_{BY} and θ_{BX} known in CM frame
- Back-to-back B_{tag} and B_{sig} fixes the B direction wrt the XY plane ($\equiv \phi_B$) upto sign

- $\mathcal{B}(B \to D^{(*)}\nu) \sim 8\% \Rightarrow$ tag efficiency $\sim 4.4\%$ is higher than hadronic tags.
- Binned LH fits to $\cos^2 \phi_B$ shape

 $\mathcal{B}(B
ightarrow \omega \ell
u) = (1.35 \pm 0.21_{ ext{stat}} \pm 0.11_{ ext{sys}}) imes 10^{-4}$

Exclusive $B \rightarrow \{\pi, \omega\} \ell \nu$ (full BABAR dataset)

$|V_{ub}|$ from $B \to \omega \ell \nu$

References:		×10 ⁻⁶	cample (2012)	
PRD 86 , 09	2004 (2012)	o untagged	sample (2012) LCSR sample (2013)	
PRD 87 , 03	2004 (2013)	3 10 - * semilep. t	ag (2013) ISGW2	
arXiv:1308	.2589 (2013)			
• $\frac{d\mathcal{B}}{dq^2}$ compared to	form-factor mode	ls: 5	BABAR	
LCSR valid at $q^2 \rightarrow 0$				
HQE based ISC	$_{\rm 2}{ m W2}$ valid at $q^2 ightarrow q^2_{ m max}$	Ъ	10 20 q² (GeV²)	
		$ V_{ub} $ (10 ⁻³)		
Measurement	LCSR $q^2 \in [0, 12]$	LCSR $q^2 \in [0, 21]$	$ISGW2 \ q^2 \in [0, 21]$	
BABAR untag. 2012		$3.22\pm0.24^{+0.45}_{-0.27}$		
BABAR untag. 2013	$3.37 \pm 0.23 \pm 0.38$	$3.23 \pm 0.22 \pm 0.38$	$\textbf{3.25}\pm\textbf{0.22}$	
BABAR SL tag. 2013		$3.41 \pm 0.31 \pm 0.38$	$\textbf{3.43}\pm\textbf{0.31}$	
BABAR avg.	$3.37 \pm 0.23 \pm 0.38$	$3.27 \pm 0.18 \pm 0.38$	$\textbf{3.3}\pm\textbf{0.18}$	
Belle had. tag (2013)	$3.08\pm0.31^{+0.44}_{-0.31}$		3.03 ± 0.26	
		< □ > < 5		
Biplab Dey (UCR/SLAC)	DPF'13	, UCSC	August 15 th , 2013 14 / 16	

Summary

SUMMARY AND INCLUSIVE/EXCLUSIVE "TENSION"

- Several new *BABA*R measurements, both inclusive and exclusive. Results fully consistent with previous measurements.
- Current world averages for $|V_{ub}|$:

 $|V_{ub}|_{\text{incl.}} = (4.37 \pm 0.20 \text{ }_{\text{exp}} \pm 0.15 \text{ }_{\text{th}}) \times 10^{-4}$

 $|V_{ub}|_{\text{excl.}} = (3.21 \pm 0.17 \text{ exp} \pm 0.26 \text{ th}) \times 10^{-4}$

- Inclusive: latest BABAR/Belle (q^2, m_X) tagged. Sum over 4 QCD calculations.
- Exclusive: only untagged $\pi \ell \nu$ and 4 LQCD points.
- Uncertainties have been reduced, but tension persists.
- Smaller, but non-zero tension in $|V_{cb}|$ as well

15 / 16

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FUTURE IMPROVEMENTS

- Better understanding of BG composition/dynamics of incl. $X_{\{c,u\}}\ell\nu$ and $q\bar{q}$
- MVA-based (instead of cut-based) hadronic tagging algorithms, with larger $(40 \times \text{ data})$ MC samples to study efficiencies of tag-modes with small BF's
- Full angular-fit for exclusive $B \rightarrow V \ell \nu$ to make use of correlations
- Improved QCD calculations with wider q^2 coverage for exclusive
- Global fits to m_X moments in $B \to X_u \ell \nu$ and E_γ spectrum in $B \to X_s \gamma$ to extract shape-function parameters and $|V_{\mu b}|$
- If tension is not due to measurements, ... New Physics? RH currents, additional scalar and tensor terms in the effective Lagrangian

Biplab Dey (UCR/SLAC)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ● August 15th, 2013

16 / 16