A Data Driven Method of Background Estimation at NO ν A DPF Meeting 2013, Santa Cruz, CA

of the modeling 2010, Sanda Of az, O

Kanika Sachdev

University of Minnesota For the NO ν A Collaboration

August 16th, 2013

- $\ast\,$ Oscillation analysis at ${\rm NO}\nu{\rm A}$
- * Muon Removed Charged Current (MRCC) A data driven method of background estimation
- * Summary

- * NO ν A can observe oscillations in two channels using a predominantly ν_{μ} beam:
 - * ν_{μ} disappearance
 - * ν_e appearance
- $\ast\,$ We have a two detector configuration
 - * The Near Detector (ND), 1km from the target, used to measure composition of the un-oscillated beam
 - * Far Detector (FD), 810km from the source, observes the oscillated beam

NOvA- Muon Remove

Kanika Sachdev (UofM)

NOvA- Muon Remove

The Near Detector

- * Functionally identical to the FD (14kt), though much smaller at 300 tons
- * The environment is quite different from the FD
 - * Underground small cosmic background
 - * Very intense neutrino beam
 - * Line source at ND vs point source at the FD
 - * Decomposition and background estimation methods exploit these features of the ND

Near Detector And ν_e Appearance Analysis

- * There is no ν_e appearance signal in the Near Detector
- * Anything our ν_e PIDs select as "signal" in the ND, is background
- * Near Detector provides a "background only" sample for ν_e appearance analysis that can be extrapolated to the FD

Event Topologies At $\mathrm{NO}\nu\mathrm{A}$

Kanika Sachdev (UofM)

NOvA- Muon Remove

Muon Removed Charged Current (MRCC)

- * Muon Removed Charged Current events are ν_{μ} CC interactions where the muon is removed from the event
- $\ast\,$ MRCC events give us a well-understood sample of hadronic showers
- $\ast\,$ Muon removal can be performed on Monte Carlo as well as data
- * ν_{μ} CC events without the muon look a lot like Neutral Current events, which are the main background to the ν_e analysis

MRCC Event Construction

*~ The muon track is selected using the muon PID (see Michael Baird's talk on ν_{μ} analysis at NOvA)

* The hits that belong to the muon track are removed from the event

Monte Carlo Truth

Track Reconstruction

Simple Muon Removal

Separating Muon Energy And Hadronic Energy

- To avoid removing extra energy from event, muon tracks must be "cleaned up" *
- * We define a "vertex region" starting from the interaction vertex where its very likely that the muon shares hits with hadronic energy
- If dE/dx falls to levels consistent with muon energy deposition, and stays there * for the next few planes, vertex region is over.

NOvA Preliminary

Muon Removal with CleanUp

* In the vertex region, instead of removing all energy in a cell, only 1 MIP is removed (the characteristic energy deposited by a minimum ionizing particle like muon).

Muon Removal Performance

* If muon removal is perfect, all of muon energy from the event should be removed and none of the energy from hadrons should be removed

MRCC Similarity To Neutral Currents

* We have done several checks to test the likeness of MRCC events to NC events
* MRCC and NC samples look similar in low as well as high level variables

MRCC Analysis Flow

 $\ast\,$ The NC background estimation is done bin by bin:

$$NC^{BG} = \frac{NC^{MC}}{MRCC^{MC}} \times MRCC^{Data}$$

- * Many systematic effects cancel in the ratio, resulting in a more accurate estimate of background
- * Uncertainties on neutrino cross-section parameters are large therefore data-driven methods are important
- $\ast\,$ MRCC gives us one such handle
- $\ast\,$ CC hadronic showers are, however, different from NC hadronic showers
- * Systematic effects accounted for include parameters like axial mass M_a , non-resonance background cross-sections, pion mean-free path etc

The Background We Are Trying To Predict Is Small...

Computing The Ratio

The error bars include statistical error and systematic error due to uncertainty on modelling parameters

Performance Of The MRCC Method

- * Using the computed ratios, we can predict the NC background in data
- * To see the performance of the method, we used a statistically independent set of Monte Carlo as pseudo-data
- $\ast\,$ The data set is equivalent to 2.2 E19 POT which amounts to $\sim\!2$ weeks of Full Near Detector data at 700kW

Estimation Of Neutral Current In Pseudo-Data

The error bands include statistical error and systematic error due to uncertainty on modelling parameters

- $\ast\,$ We have multiple Near Detector background estimators in the works
- * Muon Removed Charged Current is a data driven method of estimating neutral current rates in Near Detector
- $\ast\,$ The method gives results consistent with Monte Carlo truth
- $\ast\,$ Can estimate NC background to 10% error with <1 month of full Near Detector data
- $\ast\,$ We are excited to see it applied to our data!

Back Up

Examples Of Systematic Effects

* Effect of changing the axial mass in resonance interactions on NC and MRCC samples

Examples Of Systematic Effects

* Effect of changing the axial mass in elastic Neutral Current interactions on NC and MRCC samples

NC Background Prediction ANN ν_e PID Bins

Ratio NC/MRCC computed in ANN ν_e PID bins

NC Background prediction in ANN ν_e PID using MRCC