Barium Tagging for EXO

Scott Kravitz

Stanford University

APS DPF

UC Santa Cruz, 15 Aug. 2013

Ba

EXO Sensitivity Projections

Purple bands are 68%CL from oscillation experiments for inverted and normal mass hierarchy

EXO-200 present limit is the 90%CL envelope of limits (for different NMEs) from PRL 109 (2012) 032505

EXO-200 ultimate sensitivity: 90%CL for no signal in 4 years livetime with new analysis and Rn removal

nEXO: EXO-200's Successor

- 5 tonne LXe time projection chamber (TPC) "as similar to EXO-200 as possible"
- Provide access ports for a possible later upgrade to barium tagging

~40cm

nEXO at the SNOlab cryopit

EXO Sensitivity Projections

Purple bands are 68%CL from oscillation experiments for inverted and normal mass hierarchy

EXO-200 present limit is the 90%CL envelope of limits (for different NMEs) from PRL 109 (2012) 032505

EXO-200 ultimate

sensitivity: 90%CL for no signal in 4 years livetime with new analysis and Rn removal

Initial nEXO band refers to a detector directly scaled from EXO-200, including its measured background and 10yr livetime.

Final nEXO band refers to the same detector and no background other than 2v

Ba Tagging Motivation 🍕

- Goal: perform background free measurement
 - Measure candidate decay event positions, energies
 - Recover and identify Ba ion
 - Tag event-recovery coincidences as $\beta\beta$
 - Reject untagged events
- Achievement:
 - A background-free detector
 - Better scaling of mass sensitivity
- Strategy: multipronged approach

How it works:

- Extract Ba⁺⁺ from TPC by shaping E-field
- •Guide into vacuum
- •Convert Ba⁺⁺ to Ba⁺ [1]
- Identify via laser spectroscopy [2] Current work has demonstrated extraction of ions created by a test Ba source from 10 bar Xe into vacuum

[1] J. of Phys.: Conf. Ser. 309(2011)12005 [2] Phys. Rev. A 76, 023404 (2007)

Current Stanford Setup

Tagging from Liquid Xenon

- Decay product in LXe is Ba⁺
- Send probe into TPC, deposit Ba⁺ onto probe tip (e.g. electrostatically)
- Remove probe to identification chamber
- Ba⁺ moves slowly enough in LXe to remain in region of reconstructed decay event
- Investigating two methods of liquid tagging - CSU and Stanford

Tagging Spectroscopically in SXe (Colorado State University)

RIS at Stanford

- Thermally desorb with IR laser
- Ionize resonantly just Ba
- Detect and identify by mass using ToF spectrometer

1064 nm 553.5 nm 389.7 nm

Barium Loading in Vacuum

Before liquid, test in vacuum
¹⁴⁸Gd-driven Ba ion source developed for testing
Deposit ~10-100k Ba⁺ initially

12

Full RIS Tests

Many masses present

Euriche Curick

- Alkalis dominate (low ionization E)
- Clusters of substrate at high desorption power
- Ba and BaF from desorption laser as well as RIS Ba
- Resonant behavior observed

Desorption Challenges

- Usually desorption laser must be powerful enough to ablate several species to see RIS signal
- Ba signal from localized hotspots
- Surface contamination or structural defects could harm (help?) desorption
- Nature of bonding to surface is crucial; must choose the right material and surface prep

Surface Material and Prep

- Desired surface properties:
 - Weak Ba bond
 - Resistant to oxidation
 - Available at high purity
- Small/no RIS signal from Si, Re, Pt
- Notable RIS signal from W, Ni, Ta
- Surface cleaning:
 - Bare deposition substrate may facilitate Ba desorption
 - Reduce backgrounds
- Cleaning results:
 - Reduced backgrounds
 - No loss of signal

Results and Next Steps

- Proper choice of material and ^{#/g 10²} surface prep produces a signal with almost no backgrounds – ¹⁰ not even Ba ionized by IR laser
- Ideal conditions + luck:
 >5% efficiency from deposition to final detection
- Next:
 - Continued work on improving repeatability, efficiency
 - Testing in LXe

The EXO Collaboration

University of Alabama, Tuscaloosa AL, USA - D. Auty, T. Didberidze, M. Hughes, A. Piepke

University of Bern, Switzerland - M. Auger, S. Delaquis, D. Franco, G. Giroux, R. Gornea, T. Tolba, J-L. Vuilleumier, M. Weber

California Institute of Technology, Pasadena CA, USA - P. Vogel

Carleton University, Ottawa ON, Canada - M. Dunford, K. Graham, C. Hargrove, R. Killick, T. Koffas, F. Leonard, C. Licciardi, M.P. Rozo, D. Sinclair, V. Strickland

Colorado State University, Fort Collins CO, USA - C. Benitez-Medina, C. Chambers, A. Craycraft, W. Fairbank, Jr., N. Kaufhold, T. Walton

Drexel University, Philadelphia PA, USA - M.J. Dolinski, M.J. Jewell, Y.H. Lin, E. Smith

University of Illinois, Urbana-Champaign IL, USA - D. Beck, J. Walton, M. Tarka, L. Yang

IHEP Beijing, People's Republic of China - G. Cao, X. Jiang, Y. Zhao

Indiana University, Bloomington IN, USA - J. Albert, S. Daugherty, T. Johnson, L.J. Kaufman

University of California, Irvine, Irvine CA, USA - M. Moe

ITEP Moscow, Russia - D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich

Laurentian University, Sudbury ON, Canada - E. Beauchamp, D. Chauhan, B. Cleveland, J. Farine, B. Mong, U. Wichoski

University of Maryland, College Park MD, USA - C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen

University of Massachusetts, Amherst MA, USA - T. Daniels, S. Johnston, K. Kumar, M. Lodato, C. Mackeen, K. Malone, A. Pocar, J.D. Wright

University of Seoul, South Korea - D. Leonard

SLAC National Accelerator Laboratory, Menlo Park CA, USA - M. Breidenbach, R. Conley, K. Fouts, R. Herbst, S. Herrin, A. Johnson, R. MacLellan, K. Nishimura, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen

Stanford University, Stanford CA, USA - P.S. Barbeau, J. Bonatt, T. Brunner, J. Chaves, J. Davis, R. DeVoe, D. Fudenberg, G. Gratta, S.Kravitz, D. Moore, I. Ostrovskiy, A. Rivas, A. Schubert, D. Tosi, K. Twelker, L. Wen

Technical University of Munich, Garching, Germany - W. Feldmeier, P. Fierlinger, M. Marino

Backup Slides

LXe Cell and Ba Source

Loading $\approx 10^4$ Ba/hr

Effects of bias on Ba deposition?

Probe

- Probe is a 0.5" diameter tube
- Rollers constrain lateral movement
- Target mounted on ceramic tab with vacuum-safe conductive epoxy
- Target charged via feedthrough at the top
- Second probe machined, allows for ohmic heating of the target

Spectrometer Design

- Ions are produced at target, guided by electrodes and detected by CEM
- Transit time determines ion mass
- Front electrodes capture, shape and accelerate ions
- Back electrodes refocus and detect ions

SIMION for time of flight

Predicted RIS time of flight: 38.6 us

This includes an initial energy and spatial distribution for barium.

Target TOF Dependence

Direct Testing with Gd Source

• Spectrometer simulations: >99% efficiency, few amu resolution

Time (µs)

Want to test performance

Counts

- Move Ba source directly in front of spectrometer
- Previous spectrum is well-reproduced —— success
- Peak ratios change (different source)
- Narrower/split peaks —— better resolution

Xenon Sputtering

We can clean the surface by bombarding it with noble gas ions—xenon is handy! The spike on the left is the anode, and the target (on the right) is the cathode.

Surface Damage

ToFs

Detuning Tests

• Signal does depend on RIS laser wavelengths

Time Structure

- Sometimes a nice exponential decay
- Others, have sudden arrival of signals

By reducing the delay between the desorption laser and the RIS laser, we can shift the arrival time of the peak

Ablated and resonantly ionized barium

²⁵²Cf Fission Source

- ²⁵²Cf undergoes spontaneous fission
- Barium is ~5% of the fission fragments
- Most isotopes are radioactive, ¹³⁸Ba is not.
- The number of all Ba isotopes will constantly change.

Ba Isotope	Half-Life
138	Stable
139	83 min
140	13 days
141	18 min
142	11 min
143	15 sec
144	12 sec
145	4.3 sec
146	2.2 sec

10^{8 252}Cf is 0.83 Bq = 22 pCi

Plot courtesy of Petr Vogel