

Search for the SM Higgs Boson in the VH($b\overline{b}$) Channel at the CMS Detector

Michael Mooney Princeton University

On behalf of the CMS Collaboration

APS DPF Meeting, Santa Cruz August 15, 2013

- Introduction
- Analysis Strategy
- b-jet Energy Regression
- Control Samples
- BDT Shape Analysis
- ◆ Multi-BDT
- Results

~5 fb⁻¹ @ 7 TeV ~19 fb⁻¹ @ 8 TeV

CMS Physics Analysis Summary:

http://cms-physics.web.cern.ch/cms-physics/ public/HIG-13-012-pas.pdf

Public TWiki Page:

https://twiki.cern.ch/twiki/bin/view/ CMSPublic/Hig13012TWiki

Introduction

- ◆ Gluon-gluon fusion H → bb
 analysis is hopeless! Need handle!
- For SM H → bb, best sensitivity is obtained with VH(bb)
- Advantages/features:
 - Negligible QCD (from V tag, cuts)
 - Efficient leptonic triggers
 - Boost → obtain gains with jet substructure (studies ongoing)
- Six unique final states (l = e, μ):
 - W(lv)H($b\overline{b}$)
 - Z(l⁺l⁻)H(bb)
 - Z(vv)H(bb)
 - W(τν)H(bb) NEW (8 TeV)

Introduction

- ◆ Gluon-gluon fusion H → bb
 analysis is hopeless! Need handle!
- For SM H → bb, best sensitivity is obtained with VH(bb)
- Advantages/features:
 - Negligible QCD (from V tag, cuts)
 - Efficient leptonic triggers
 - Boost → obtain gains with jet substructure (studies ongoing)
- Six unique final states (l = e, μ):
 - W(lv)H($b\overline{b}$)
 - Z(l⁺l⁻)H(bb)
 - Z(vv)H(bb)
 - W(τν)H(bb) NEW (8 TeV)

Analysis Strategy

- Search strategy:
 - **Triggers**: one/two isolated lepton(s), MHT, or MET + two jets
 - **Two b-tagged jets** (corrected using b-jet energy regression)
 - AK5 jets (p $_{_{\rm T}}$ > 30 GeV, $|\eta|$ < 2.5) using CMS particle-flow
 - b-tagging with combined secondary vertex (CSV)
 - Boosted W/Z decaying to leptons
 - Isolated, central leptons (or large MET)
 - $p_{_{\rm T}}(e) > 30/20 \text{ GeV (W/Z)}, \ p_{_{\rm T}}(\mu) > 20 \text{ GeV}$
 - $p_{T}(\tau) > 40$ GeV, 1-prong hadronic τ decays
- Use MVA (TMVA): fit using **BDT shapes**
- Blind until approval in CMS Higgs group
 - BDT signal region blind
 - M(jj) window blind: 90 GeV < M(jj) < 150 GeV
 - Use control regions to validate data/MC agreement

- Use dedicated b-jet energy regression on top of nominal jet corrections
- Train using VH signal MC (H b-jets), independently for each mode
- Common input variables and training parameters across modes
 - Only use MET in Z(l⁺l⁻)H(bb̄) (jet mis-measurement, not real MET)
- Also use soft lepton variables (semileptonic B decays)
 - Soft lepton must pass **loose ID cuts**

Variable Category	Variable
Jet Kinematics	$p_{T}^{}$, η , raw $p_{T}^{}$, $E_{T}^{}$, $m_{T}^{}$
Jet-related Properties	p _T (lead track), charged had. energy fraction, charged EM energy fraction, N(charged tracks), JEC uncertainty
Vertex	$p_{T}(vtx), m(vtx), L_{3D}(vtx), \Delta L_{3D}(vtx)$
Soft Lepton	$p_{T}^{(lep)}, p_{T,rel}^{(lep)}, \Delta R(jet, lep)$
Z(l ⁺ l ⁻)H(bb̄) Specific	MET, Δφ(jet,MET)

Regression Validation

- M(jj) resolution improvement:
 - **15-20%** for $Z(l^+l^-)H(b\overline{b})$
 - 7-12% for $Z(vv)H(b\overline{b})$, $W(lv)H(b\overline{b})$
- ♦ Gain of ~15% in analysis sensitivity
- Validate regression using **data**
 - $p_T(b\overline{b})/p_T(Z)$ balance $(Z(l^+l^-)Z(b\overline{b})$ enriched CS)
 - Top mass (single top enriched CS)

Control Samples

- Define control samples (CS's) to isolate and study backgrounds
- Use cuts as close as possible to signal region, but:
 - Invert some cuts to ensure orthogonality to signal region
 - Loosen some cuts to gain statistics

- Use to find data/MC scale factor (SF) for background yields in BDT signal region
- Three CS's: V+udscg,
 V+bb, tt
- Perform simultaneous fit to variables in all CS's to obtain SF's

CS Data/MC Comparison

Correlations Check

10

Signal Region Definition

- Define signal-enriched region (for BDT shape fit) orthogonal to control regions, cutting out background primarily via boost, b-tagging, and QCD-targeted cuts
- Three different categories per mode (see later slide), split based on p_T(V)

Variable	$W(\ell \nu)H$	$W(\tau \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$
$p_{T}(V)$	[100 - 130] [130 - 180] [> 180]	[> 120]	[50 - 100] [> 100]	[100 - 130] [130 - 170] [> 170]
$m_{\ell\ell}$	_	—	[75 - 105]	_
$p_{\mathrm{T}}(j_1)$	> 30	> 30	> 20	> 60
$p_{\mathrm{T}}(j_2)$	> 30	> 30	> 20	> 30
$p_{T}(jj)$	> 100	> 120	-	[>100] $[>130]$ $[>130]$
<i>m</i> (jj)	< 250	< 250	[40 - 250] [< 250]	< 250
E_{T}^{miss}	> 45	> 80	-	-
$p_T(\tau)$	-	> 40	-	_
$p_T(\text{track})$	-	> 20	-	_
CSV _{max}	> 0.40	> 0.40	[> 0.50] [> 0.244]	> 0.679
CSV _{min}	> 0.40	> 0.40	> 0.244	> 0.244
N_{aj}	-	_	- /	[< 2] [–] [–]
Nal	= 0	= 0	-/ _/	= 0
$\Delta \phi(V, H)$	_	-	7	> 2.0
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})$	-	-	/ /-	[> 0.7] [> 0.7] [> 0.5]
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}(\mathrm{tracks}))$	-	- <	/ -	< 0.5
E ^{miss} significance	-	- \	\ - <	> 3] [–] [–]
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	$< \pi/2$	-		\ \ -

BDT Training

- Shape analysis using BDT classification output
- Train BDT separately for different signal modes, mass points
 - But combine **e** and μ modes for **W(lv)H(bb**), **Z(l**⁺**l**⁻)**H(bb**)
- For final BDT shape fit, reshape BDT (binning transformation) to avoid too little background MC in any one bin

Variable				
$p_{T}(j)$: transverse momentum of each Higgs daughter				
m(jj): dijet invariant mass				
p _T (jj): dijet transverse momentum				
$p_{\rm T}({\rm V})$: vector boson transverse momentum (or $E_{\rm T}^{\rm miss}$)				
N _{aj} : number of additional jets				
CSV _{max} : value of CSV for the Higgs daughter with largest CSV value				
CSV _{min} : value of CSV for the Higgs daughter with second largest CSV value				
$\Delta \phi(V, H)$: azimuthal angle between V (or E_T^{miss}) and dijet				
$ \Delta \eta(jj) $: difference in η between Higgs daughters				
$\Delta R(jj)$: distance in $\eta - \phi$ between Higgs daughters				
$\Delta \theta_{\text{pull}}$: color pull angle [35]				
$\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$)				
maxCSV _{ai} : maximum CSV of the additional jets in an event (only for $Z(\nu\nu)H$ and $W(\ell\nu)H$)				
$\min \Delta R(H, aj)$: mimimum distance between an additional jet and the Higgs candidate (only for $Z(\nu\nu)H$ and $W(\ell\nu)H$)				
Angular variables: invariant mass of the VH system, angle Z-Z*, angle Z-I, angle H-jet (only for $Z(\ell\ell)H$)				

BDT Validation

Event Categories

- Split events into three categories via $p_{T}(V)$ to increase sensitivity
 - Only two categories for $Z(l^+l^-)H(b\overline{b})$ no sensitivity gain using three categories
- Example: $W(lv)H(b\overline{b})$
 - Low $p_T(V)$: 100 GeV < $p_T(W)$ < 130 GeV
 - Medium $p_{T}(V)$: 130 GeV < $p_{T}(W)$ < 180 GeV
 - **High p_T(V)**: p_T(W) > 180 GeV

All Candidates

Multi-BDT Shape Analysis

- Use multiple BDT classifiers to separate signal from one background at a time (similar to **CDF**'s technique)
- Train 3 individual BDT's (targets: tt, V+jets, VV) in addition to nominal "final BDT"
- Only used for **Z(vv)H(bb**) and **W(lv)H(bb**) modes

Multi-BDT Example

Post-fit BDT Plots

High p_T(V)

17

Post-fit BDT Plots

-0.8 -0.6 -0.4 -0.2

-1

0

0.2 0.4

0.6 0.8

BDT output

 $Low p_{T}(V)$

- Use up/down **shape** systematics for MC BDT shapes in fit, obtained via propagation of mis-tag, b-tag, JES, JER, and PU uncertainties
- **Normalization** systematics for other contributions (including uncertainty on data/MC scale factors for background estimation)

		Yield uncertainty (%)	Individual contribution	Effect of removal
Source	Type	range	to μ uncertainty (%)	on μ uncertainty (%)
Luminosity	norm.	2.2-4.4	< 2	< 0.1
Lepton efficiency and trigger (per lepton)	norm.	3	< 2	< 0.1
$Z(\nu\nu)H$ triggers	shape	3	< 2	< 0.1
Jet energy scale	shape	2-3	5.0	0.5
Jet energy resolution	shape	3–6	5.9	0.7
Missing transverse energy	shape	3	3.2	0.2
b-tagging	shape	3–15	10.2	2.1
Signal cross section (scale and PDF)	norm.	4	3.9	0.3
Signal cross section (p_T boost, EWK/QCD)	norm.	2/5	3.9	0.3
Monte Carlo statistics	shape	1–5	13.3	3.6
Backgrounds (data estimate)	norm.	10	15.9	5.2
Single-top (simulation estimate)	norm.	15	5.0	0.5
Dibosons (simulation estimate)	norm.	15	5.0	0.5
MC modeling (V+jets and tt)	shape	10	7.4	1.1

- Can see well-defined VV peak (7.5 σ with 8 TeV alone)
 - Measure $\mu_{VV} \approx 1.19 \pm 0.25$ important cross-check for VH analysis
- Suggestive, small excess in neighborhood of 125 GeV

Results

- Compute limits and p-values using full CL_s frequentist calculation
- Find broad **excess** for 120+ GeV

130

m_н [GeV]

135

- Expected limit (125 GeV): 0.95*SM
- Observed limit (125 GeV): **1.89*SM**
 - Expected signif. (125 GeV): **2.1 σ**
 - Observed signif. (125 GeV): **2.1 σ**
 - Find similar signal strength in all modes @ 125 GeV

Summary

VH(bb) search results:

- 125 GeV signal strength: **1.0 ± 0.5**
- 125 GeV limits:
 - Expected: 0.95
 - Observed: **1.89**
- 125 GeV significance:
 - Expected: **2.1** σ
 - Observed: **2.1** σ

VV(bb) cross-check results:

- Signal strength: **1.19 ± 0.25**
- Expected significance: **6.1** σ
- Observed significance: 7.5σ

BACKUP SLIDES

b-tagging Performance

W(ev)H(bb) Event Display

Run: 173389 Lumi: 485 Event: 654261640

M(jj): 114.5 GeV/c² p_T(jj): 162.3 GeV/c p_T(W): 187.6 GeV/c

Z(l⁺l⁻)H(b \overline{b}):

- Cleanest mode
- Least significant mode
- Main bkg: Z+jets

◆ **Z(vv)H(bb)**:

- High MET required (boosted $Z \rightarrow v\overline{v}$)
- Main bkg: W/Z+jets, tt

◆ W(lv)H(bb):

- Most significant mode
- Main bkg: W+jets, tt

Backgrounds

Reducible backgrounds:

- QCD (isolated leptons, $\Delta \phi(V,H)$, MET, b-tagging, $\Delta \phi(MET,j_{nearest})$)
- V+udscg (b-tagging, boost)
- tt (additional jets)
- Single top (additional jets)

Irreducible backgrounds:

- V+ $b\overline{b}$ (boost)
- $Z(ll,vv)Z(b\overline{b})$ (M(jj))
- $W(lv)Z(b\overline{b})$ (M(jj))

Scale Factors (HCP)

Process	$W(\ell \nu)H$	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$	$Z(\nu\nu)H$
Low $p_{\rm T}$	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV
W + udscg	$0.88 \pm 0.01 \pm 0.03$	$1.01 \pm 0.02 \pm 0.01$	-	-	$0.89 \pm 0.01 \pm 0.03$	$0.96 \pm 0.06 \pm 0.03$
Wbb	$1.91 \pm 0.14 \pm 0.31$	$2.07 \pm 0.15 \pm 0.10$	-	-	$1.36 \pm 0.10 \pm 0.15$	$1.30 \pm 0.17 \pm 0.10$
Z + udscg	-	-	$1.11 \pm 0.03 \pm 0.11$	$1.10 \pm 0.02 \pm 0.06$	$0.87 \pm 0.01 \pm 0.03$	$1.15 \pm 0.07 \pm 0.03$
Zbb	-	-	$0.98 \pm 0.05 \pm 0.12$	$1.08 \pm 0.04 \pm 0.08$	$0.96 \pm 0.02 \pm 0.03$	$1.12 \pm 0.10 \pm 0.04$
tī	$0.93 \pm 0.02 \pm 0.05$	$1.07 \pm 0.01 \pm 0.01$	$1.03 \pm 0.04 \pm 0.11$	$1.01 \pm 0.02 \pm 0.06$	$0.97 \pm 0.02 \pm 0.04$	$1.05 \pm 0.07 \pm 0.03$
High $p_{\rm T}$	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV
W+udscg	$0.79 \pm 0.01 \pm 0.02$	$0.94 \pm 0.02 \pm 0.01$	-	-	$0.78 \pm 0.02 \pm 0.03$	$0.95 \pm 0.05 \pm 0.02$
Wbb	$1.49 \pm 0.14 \pm 0.19$	$1.72 \pm 0.16 \pm 0.08$	-	-	$1.48 \pm 0.15 \pm 0.20$	$1.27 \pm 0.18 \pm 0.10$
Z + udscg	-	-	$1.11 \pm 0.03 \pm 0.11$	$1.10 \pm 0.02 \pm 0.06$	$0.97 \pm 0.02 \pm 0.04$	$1.04 \pm 0.07 \pm 0.02$
Zbb	-	-	$0.98 \pm 0.05 \pm 0.12$	$1.08 \pm 0.04 \pm 0.08$	$1.08 \pm 0.09 \pm 0.06$	$1.15 \pm 0.10 \pm 0.04$
tī	$0.84 \pm 0.02 \pm 0.03$	$0.99 \pm 0.01 \pm 0.01$	$1.03 \pm 0.04 \pm 0.11$	$1.01 \pm 0.02 \pm 0.06$	$0.97 \pm 0.02 \pm 0.04$	$1.03 \pm 0.07 \pm 0.03$

Scale Factors (LHCp)

Process	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$
Low $p_{\rm T}({\rm V})$			$\langle \rangle$
W + udscg	$1.03 \pm 0.01 \pm 0.05$	- /	$0.83 \pm 0.02 \pm 0.04$
W+b	$2.22 \pm 0.25 \pm 0.20$	- / /	$2.30 \pm 0.21 \pm 0.11$
$W + b\overline{b}$	$1.58 \pm 0.26 \pm 0.24$		$0.85 \pm 0.24 \pm 0.14$
Z + udscg	-	$1.11 \pm 0.04 \pm 0.06$	$1.24 \pm 0.03 \pm 0.09$
Z+b	-	$1.59 \pm 0.07 \pm 0.08$	$2.06 \pm 0.06 \pm 0.09$
$Z + b\overline{b}$		$0.98 \pm 0.10 \pm 0.08$	$1.25 \pm 0.05 \pm 0.11$
tī	$1.03 \pm 0.01 \pm 0.04$	$1.10 \pm 0.05 \pm 0.06$	$1.01 \pm 0.02 \pm 0.04$
Intermediate $p_{\rm T}({\rm V})$		///	
W + udscg	$1.02 \pm 0.01 \pm 0.07$		$0.93 \pm 0.02 \pm 0.04$
W+b	$2.90 \pm 0.26 \pm 0.20$		$2.08 \pm 0.20 \pm 0.12$
$W + b\overline{b}$	$1.30 \pm 0.23 \pm 0.14$		$0.75 \pm 0.26 \pm 0.11$
Z + udscg) /- \	ſ - \	$1.19 \pm 0.03 \pm 0.07$
Z+b	14 1	-	$2.30 \pm 0.07 \pm 0.08$
$Z + b\overline{b}$	- 1	\ -	$1.11 \pm 0.06 \pm 0.12$
tī	$1.02 \pm 0.01 \pm 0.15$	_	$0.99 \pm 0.02 \pm 0.03$
High $p_{\rm T}({\rm V})$			
W + udscg	$1.04 \pm 0.01 \pm 0.07$	_	$0.93 \pm 0.02 \pm 0.03$
W+b	$2.46 \pm 0.33 \pm 0.22$	-	$2.12 \pm 0.22 \pm 0.10$
$W + b\vec{b}$	$0.77 \pm 0.25 \pm 0.08$	_	$0.71 \pm 0.25 \pm 0.15$
Z + udscg	_	$1.11 \pm 0.04 \pm 0.06$	$1.17 \pm 0.02 \pm 0.08$
Z + b	_	$1.59 \pm 0.07 \pm 0.08$	$2.13 \pm 0.05 \pm 0.07$
$Z + b\overline{b}$	_	$0.98 \pm 0.10 \pm 0.08$	$1.12 \pm 0.04 \pm 0.10$
tī	$1.00 \pm 0.01 \pm 0.11$	$1.10 \pm 0.05 \pm 0.06$	$0.99 \pm 0.02 \pm 0.03$

30

Triggers	7 TeV (2011)	8 TeV (2012)
W(μ∨)H Ζ(μμ)H	≥ 1 (isolated) muon p⊤ ^µ > 17–40 GeV/c	≥ 1 (isolated) muon p⊤ ^µ > 24–40 GeV/c
W(e∨)H	≥ 1 isolated electron p⊤ ^e > 17–30 GeV/c (≥ 2 jets for lower threshold)	≥ 1 isolated electron p⊤ ^e > 27 GeV/c
Z(ee)H	≥ 2 isolated electrons p _T ^{e,1st} > 17 GeV/c p _T ^{e,2nd} > 8 GeV/c	≥ 2 isolated electrons p _T ^{e,1st} > 17 GeV/c p _T ^{e,2nd} > 8 GeV/c
Z(∨∨)H	MHT >150 GeV OR ≥ 2 central jets pT >20 GeV MET >80-100 GeV	MHT > 150 GeV OR ≥ 2 central jets pT > 30 GeV, MET > 80 GeV

MC Generator Summary

Process	MC Generator
VH	Powheg
V+jets	Madgraph/Herwig
tt	Madgraph, Powheg (7 TeV, 8 TeV)
Single top	Powheg
VV	Pythia/Madgraph
QCD multijet	Pythia

CS Definitions

$W(lv)H(b\overline{b})$

Variable	W+LF	tī	W+HF
$p_{\rm T}({\rm V})$	[100 - 130][130, 180][> 180]	[100 - 130][130, 180][> 180]	[100 - 130][130, 180][> 180]
$p_{\mathrm{T}}(j_1)$	> 30	> 30	> 30
$p_{\mathrm{T}}(j_2)$	> 30	> 30	> 30
$p_{\mathrm{T}}(\mathrm{jj})$	> 120	> 120	> 120
m(jj)	< 250	< 250	< 250, ∉ [90 − 150]
CSV _{max}	[0.244 - 0.898]	> 0.898	> 0.898
$N_{ m aj}$	< 2	> 1	= 0
$N_{\rm al}$	= 0	= 0	= 0
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 45	> 45	> 45
$E_{\rm T}^{\rm miss}$ significance	$> 2.0(\mu) > 3.0(e)$	-	-

CS Definitions

$Z(l^+l^-)H(b\overline{b})$

Variable	Z+jets	tī
$m_{\ell\ell}$	[75 - 105]	∉ [75 – 105]
$p_{\mathrm{T}}(j_1)$	> 20	> 20
$p_{\mathrm{T}}(j_2)$	> 20	> 20
$p_{\mathrm{T}}(\mathrm{V})$	> 50	[50 - 100]
m(jj)	$< 250, \notin [80 - 150]$	$< 250, \notin [80 - 150]$
CSV _{max}	> 0.244	> 0.244
CSV _{min}	> 0.244	> 0.244

CS Definitions

Z(vv)H(bb)

Variable	Z+LF	Z+HF	#	W+LE	W+HF
Eniss	[100 - 130] [130 - 170] [> 170]	[100 - 130] [130 - 170] [> 170]	[100 - 130] [130 - 170] [> 170]	[100 - 130] [130 - 170] [> 170]	[100 - 130] [130 - 170] [> 170]
$p_T(j_1)$	> 60	> 60	> 60	> 60	> 60
$p_T(j_2)$	> 30	> 30	> 30	> 30	> 30
pr(jj)	[> 100][> 130][> 130]	[> 100][> 130] [> 130]	[> 100][> 130][> 130]	[> 100][> 130][> 130]	[>100][>130][>130]
m(jj)	< 250	< 250, ∉ [100 - 140]	< 250, ∉ [100 − 140]	< 250	< 250, ∉ [100 - 140]
CSVmax	[0.244 - 0.898]	> 0.679	> 0.898	[0.244 - 0.898]	> 0.679
CSV _{min}	_	> 0.244	-	_	> 0.244
Naj	[< 2] [-] [-]	[< 2] [–] [–]	≥ 1	= 0	= 0
Nal	= 0	= 0	= 1	= 1	= 1
$\Delta \phi(V, H)$	-	> 2.0	-	-	> 2.0
$\Delta \phi(E_T^{miss}, jet)$	[> 0.7] $[> 0.7]$ $[> 0.5]$	[> 0.7] $[> 0.7]$ $[> 0.5]$	[> 0.7] $[> 0.7]$ $[> 0.5]$	[> 0.7] $[> 0.7]$ $[> 0.5]$	[> 0.7] $[> 0.7]$ $[> 0.5]$
$\Delta \phi(E_T^{miss}, E_T^{miss}(tracks))$	< 0.5	< 0.5	_	_	_
E ^{miss} significance	[> 3] [-] [-]	[> 3] [–] [–]	[> 3] [–] [–]	[> 3] [–] [–]	[> 3] [-] [-]

M(bb) Plot Selection

36

Variable	W(μν)H	$W(e\nu)H$	$W(\tau \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$
$p_{\rm T}({\rm V})$	[100 - 130][130 - 180][> 180]	[100 - 150] [> 150]	[< 250]	[50 - 100][100 - 150][> 150]	[100 - 130][130 - 170][> 170]
$m_{\ell\ell}$		-	_	$75 < m_{\ell\ell} < 105$	-
$p_{T}(j_1)$	> 30	> 30	> 30	> 20	[> 60][> 60][> 80]
$p_{\mathrm{T}}(j_2)$	> 30	> 30	> 30	> 20	> 30
$p_{\rm T}(jj)$	> 100	> 100	> 120	-	[> 110][> 140][> 190]
N_{aj}	= 0	= 0	= 0	-	= 0
$N_{\rm al}$	= 0	= 0	> 80	-	= 0
$E_{\rm T}^{\rm miss}$	> 45	> 45	_	< 60.	-
$p_T(\tau)$	-	-	> 40	-	-
$p_T(\text{track})$	-	-	> 20	-	-
CSV _{max}	0.898	0.898	0.898	0.679	0.898
CSV _{min}	> 0.5	> 0.5	> 0.4	> 0.5	> 0.5
$\Delta \phi(V, H)$	> 2.95	> 2.95	> 2.95	-	> 2.95
$\Delta R(jj)$	-	-	= 0	[-][-][< 1.6]	-
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})$	-	-	_	-	[> 0.7][> 0.7][> 0.5]
$\Delta \phi(E_T^{miss}, E_T^{miss}(tracks))$	-	-	-	-	< 0.5
$\Delta \phi(E_T^{miss}, \ell)$	$< \pi/2$	$<\pi/2$	-	-	-

Jet Sub-structure

- For AK5 jets, b-jets from Higgs decay begin merging above 400 GeV
- Sub-structure not necessary at 8 TeV but sensitivity gains are possible even now (5-10%, preliminary)
- First attempts are reasonably straight-forward (additional BDT training variables) but more complex ideas are being investigated