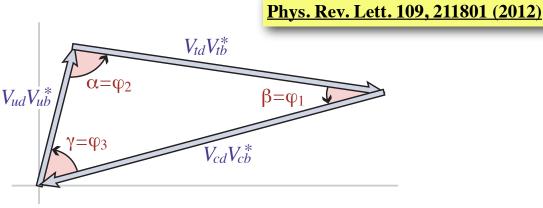


Recent Results on CP and T Violation in Hadronic B-meson Decays at BaBar

Tomo Miyashita Caltech

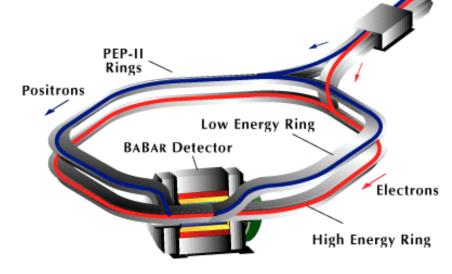
Representing **The BaBar Collaboration**

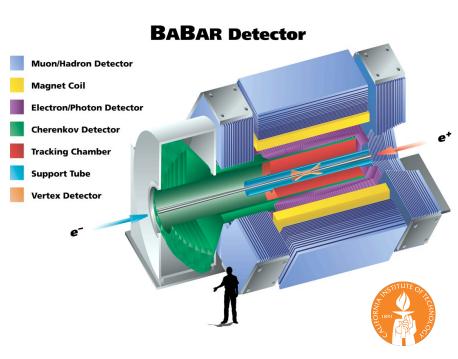
August 15, 2013


Overview

• "Measurement of *CP*-violating asymmetries in $B^0 \rightarrow (\rho \pi)^0$ decays using a time-dependent Dalitz plot analysis"

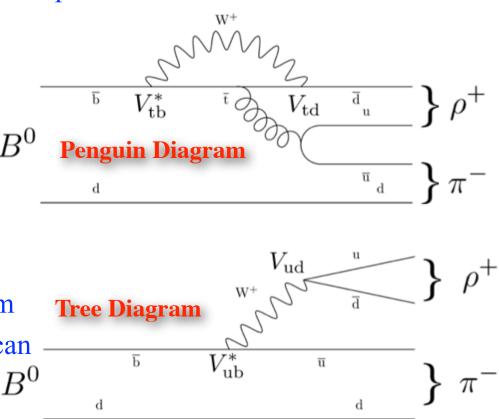
Phys. Rev. D 88, 012003 (2013)


- "Measurement of the time-dependent *CP* asymmetry of partially reconstructed $B^0 \rightarrow D^{*+}D^{*-}$ decays" <u>Phys. Rev. D 86, 112006 (2012)</u>
- "Obvservation of direct *CP* violation in the measurement of the CKM angle γ with $B^{\pm} \to D^{(*)}K^{(*)\pm}$ decays" <u>Phys. Rev. D 87, 052015 (2013)</u>
 - "Observation of time reversal violation in the B⁰ meson system"
 <u>Phys. Rev. Lett. 109, 211801</u>



The BaBar Experiment

- Data collected by the BaBar detector at the PEP-II asymmetric-energy electron-positron collider at the SLAC National Accelerator Laboratory
- All analyses use the full dataset of $\sim 430 \text{ fb}^{-1}$ collected at the $\Upsilon(4S)$ resonance
 - Though some of the measurements used in the gamma combination only used a subset of the data
- Approximately $470 \times 10^6 \ B\overline{B}$ pairs


$B^0 \rightarrow \rho \pi$ CP Violation Analysis I

VudVul

Phys. Rev. D 88, 012003 (2013)

- Dominated by $B^0 \to \rho^{\pm} \pi^{\mp}$
- Extensive update and reoptimization of a 2007 BaBar analysis*
- Extracts information about alpha, and other parameters
 - Interference between tree and penguin modes and decays w/ and w/o mixing provides sensitivity to alpha
- The use of a full Dalitz plot analysis reduces ambiguities found in analyses that ignore the interference regions
- Isospin relations allow information from charged B decays to be used in alpha scan
 *Phys. Rev. D 76, 012004 (2007)

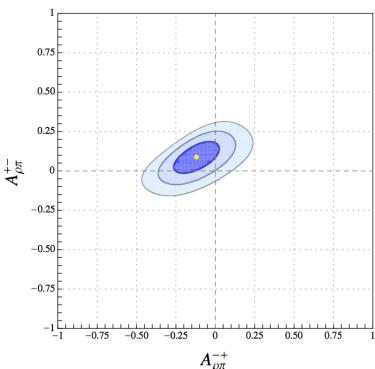
 $V_{td}V_{tb}^*$

 $V_{cd}V_{cb}^*$

$B^0 \rightarrow \rho \pi$ CP Violation Analysis II

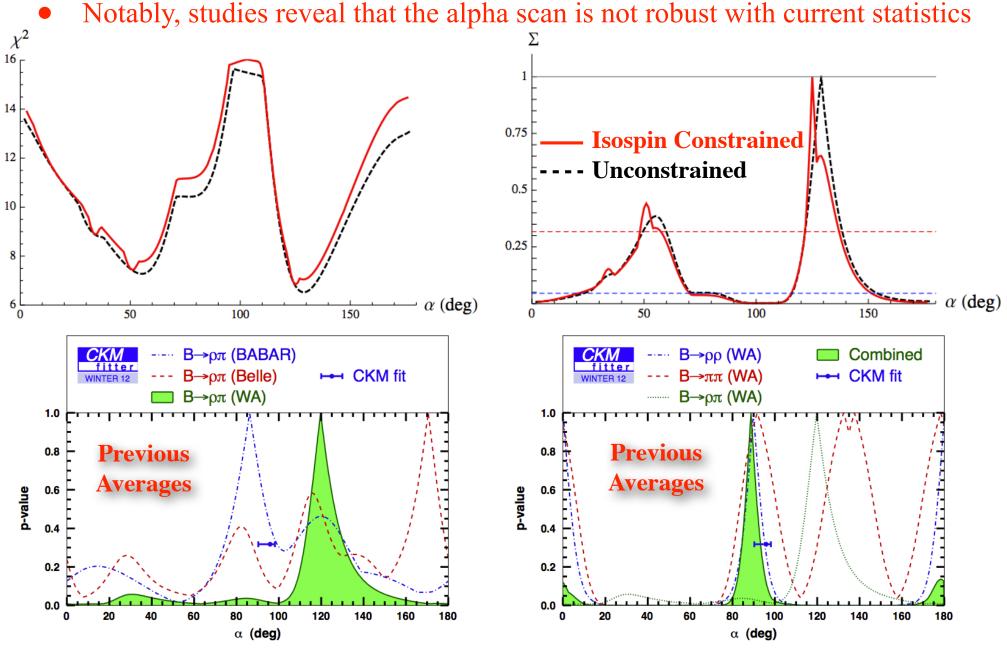
• Direct *CPV* asymmetries extracted in 2D scan:

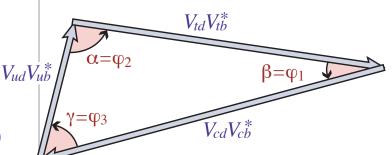
$$\mathcal{A}_{\rho\pi}^{+-} \equiv \frac{\Gamma(\bar{B}^0 \to \rho^- \pi^+) - \Gamma(B^0 \to \rho^+ \pi^-)}{\Gamma(\bar{B}^0 \to \rho^- \pi^+) + \Gamma(B^0 \to \rho^+ \pi^-)} = 0.09^{+0.05}_{-0.06} \pm 0.04$$


$$\mathcal{A}_{\rho\pi}^{-+} \equiv \frac{\Gamma(\bar{B}^0 \to \rho^+ \pi^-) - \Gamma(B^0 \to \rho^- \pi^+)}{\Gamma(\bar{B}^0 \to \rho^+ \pi^-) + \Gamma(B^0 \to \rho^- \pi^+)} = -0.12 \pm 0.08^{+0.04}_{-0.05}$$

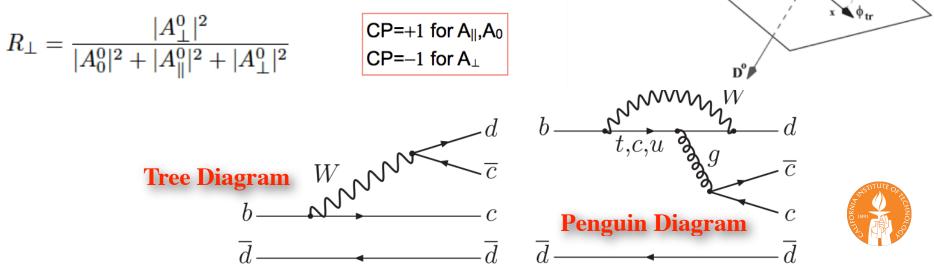
- Origin (no direct *CPV*) is $\sim 2\sigma$ from central value
- Previous results:

BaBar 2007Belle 2008 $\mathcal{A}_{\rho\pi}^{+-} = 0.03 \pm 0.07 \pm 0.04$ $\mathcal{A}_{\rho\pi}^{+-} = 0.21 \pm 0.08 \pm 0.04$ $\mathcal{A}_{\rho\pi}^{-+} = -0.32 \pm 0.16^{+0.09}_{-0.10}$ $\mathcal{A}_{\rho\pi}^{-+} = 0.08 \pm 0.16 \pm 0.11$


• The 26 physics parameters describing the $B^0 \rightarrow \rho \pi$ decay are extracted with, on average, 0.47 times the statistical uncertainties from the previous BaBar measurement


$B^0 \rightarrow \rho \pi$ CP Violation Analysis III

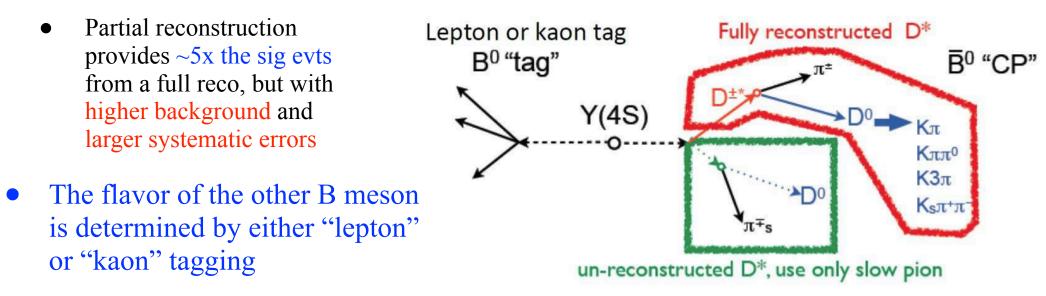
• We extract information about alpha from a chi2 scan


$B^0 \rightarrow D^{*+}D^{*-}$ CP Violation Analysis I

- $b \rightarrow c\overline{c}d$ time-dependent *CPV* measurement
- In the absence of penguin contribs, would yield same $\sin 2\beta$ as from $b \to c\overline{c}s \ (J/\psi K)$

 \overline{D}^{0}

- Only expect correction of a few % due to penguin contributions in the standard model
- Large discrepancy between $\sin 2\beta$ in the two modes could indicate new physics
- Vector-Vector final state is a mixture of *CP*-odd and *CP*-even states
 - Need angular analysis to separate *CP* states
 - Using fully reconstructed events, BaBar and Belle have measured the *CP*-odd fraction R_{\perp} and the time-dep *CP* asymmetry



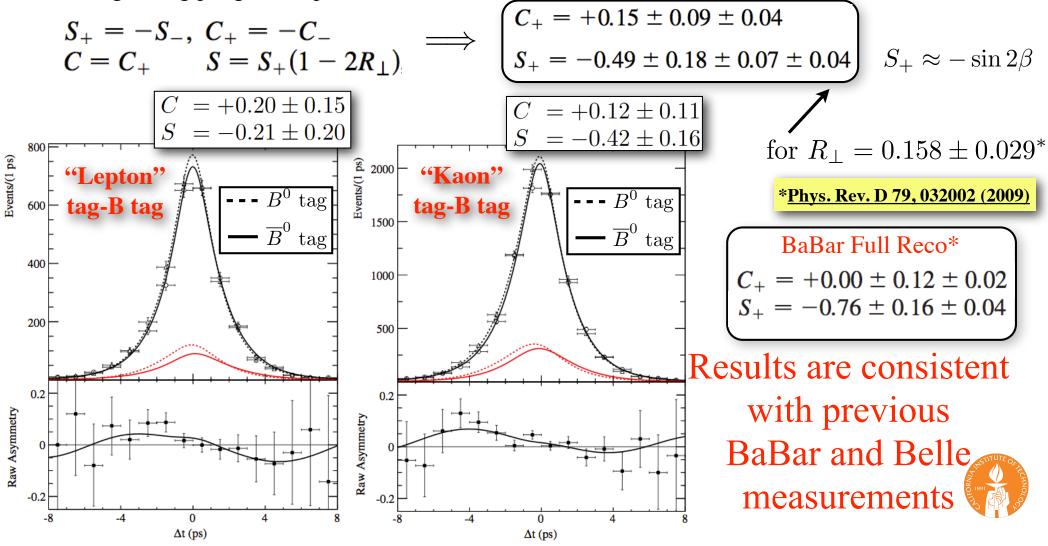
 θ_{tr}

D*

$B^0 \rightarrow D^{*+}D^{*-}$ CP Violation Analysis II

- Use partial reconstruction
 - One D^* is fully reconstructed from $D^* \to D^0 \pi$ where the D^0 decays to one of 4 modes
 - The fully reconstructed D^* is matched with a slow pion of opposite charge
 - The D^* candidate is selected if the kinematics are consistent with $B^0 \to D^* D^0 \pi$ where the D^0 is missing

$B^0 \rightarrow D^{*+}D^{*-}$ CP Violation Analysis III


• Results:

• Combined parameters:

 $\begin{array}{rcl} C &=& +0.15 \pm 0.09 \pm 0.05 \\ S &=& -0.34 \pm 0.12 \pm 0.09 \end{array}$

 $\left(\begin{array}{c} \text{PDG 2012 WA} \\ \sin 2\beta = 0.679 \pm 0.020 \end{array} \right)$

• Neglecting penguin amplitudes:

Overview of Gamma Measurement Methods

- Typically measure γ from interference between $B^- \to DK^ (D \to f)$ and $B^- \to \overline{D}K^ (\overline{D} \to f)$ where final state f is common to D and \overline{D}
- Our gamma measurements are conveniently classified by the final state of the D meson: $-DK^{-}$
- GLW Method <u>Phys. Rev. D 82, 072004 (2010)</u>
 - Reconstruct D from CP eigenstates (e.g., $D \to K^+ K^-$, $D \to K_S \pi^0$)
- ADS Method <u>Phys. Rev. D 82, 072006 (2010)</u>
 - Use interference between decay chains involving Cabibbo-favored / doubly Cabibbo-suppressed D decays (e.g., $D \rightarrow K^- \pi^+$) b
 - Enhanced interference, but poor statistics
- GGSZ Method (most precise) Phys. Rev. Lett. 105, 121801 (2010)
 - Use 3-body self-conjugate modes (e.g., $D \to K_S \pi^+ \pi^-$)
 - Hadronic D-decay parameters vary across Dalitz Plot, aiding in gamma determination

 D^0

 \bar{D}^0

 $f_{D/\bar{D}}K^{-}$

 W^{-}_{z}

 \overline{u}

 \mathcal{U}

 \bar{c}

 \bar{u}

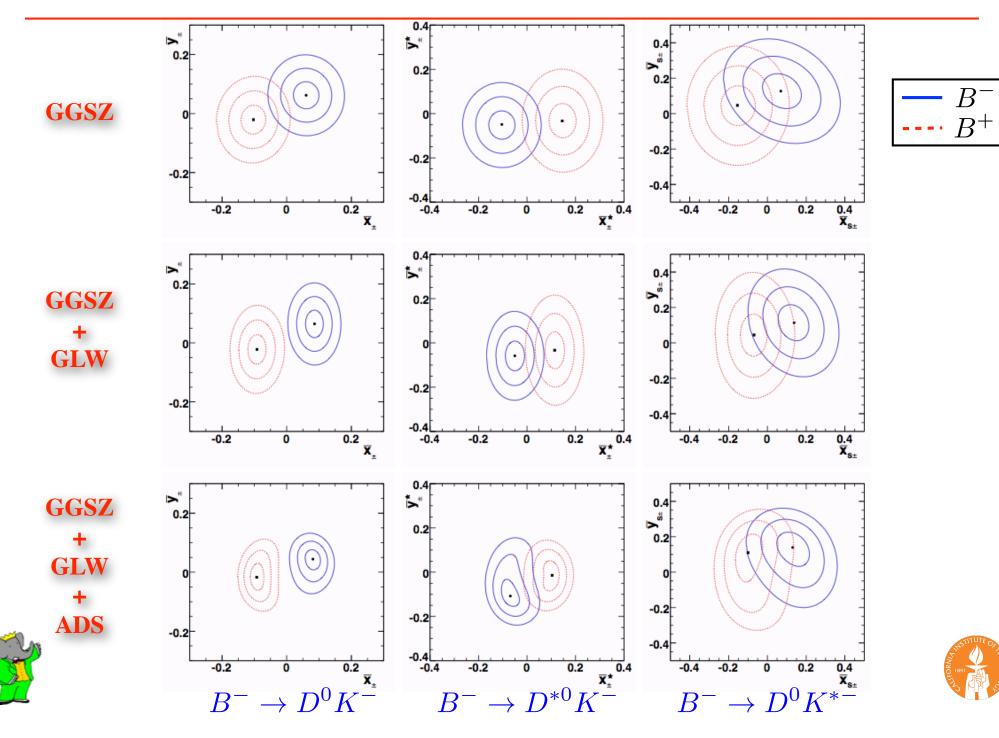
B

 B^-

b

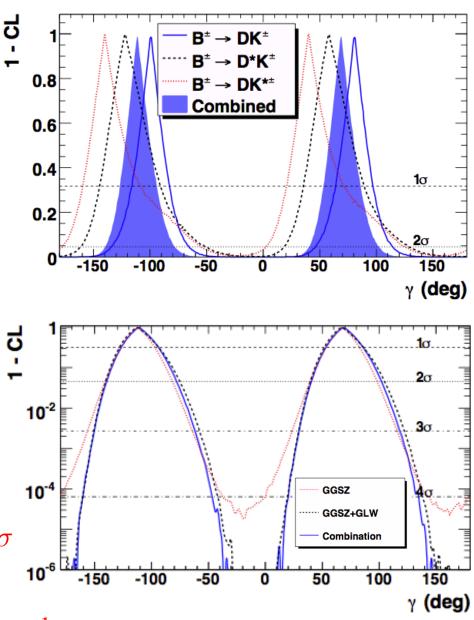
 \bar{u}

Combined γ Measurement Using $B^{\pm} \to D^{(*)} K^{(*)\pm}$


• Combination strategy

- Parameterize likelihood shapes and convolve with systematic errors
- Express GLW and ADS parameters in cartesian coordinates
- Build global likelihood function from the product of partial likelihoods for GGSZ, GLW, and ADS measurements (and including external constraints for hadronic D parameters)
- Maximize likelihood and extract best values of cartesian coordinates and D hadronic decay parameters
- Plot projections of cartesian coordinates
- Compute gamma

Combined γ Measurement Using $B^{\pm} \to D^{(*)} K^{(*)\pm}$ II


Combined γ Measurement Using $B^{\pm} \to D^{(*)}K^{(*)\pm}$ III

- Extraction of gamma
 - Transform cartesian coordinates into polar coordinates

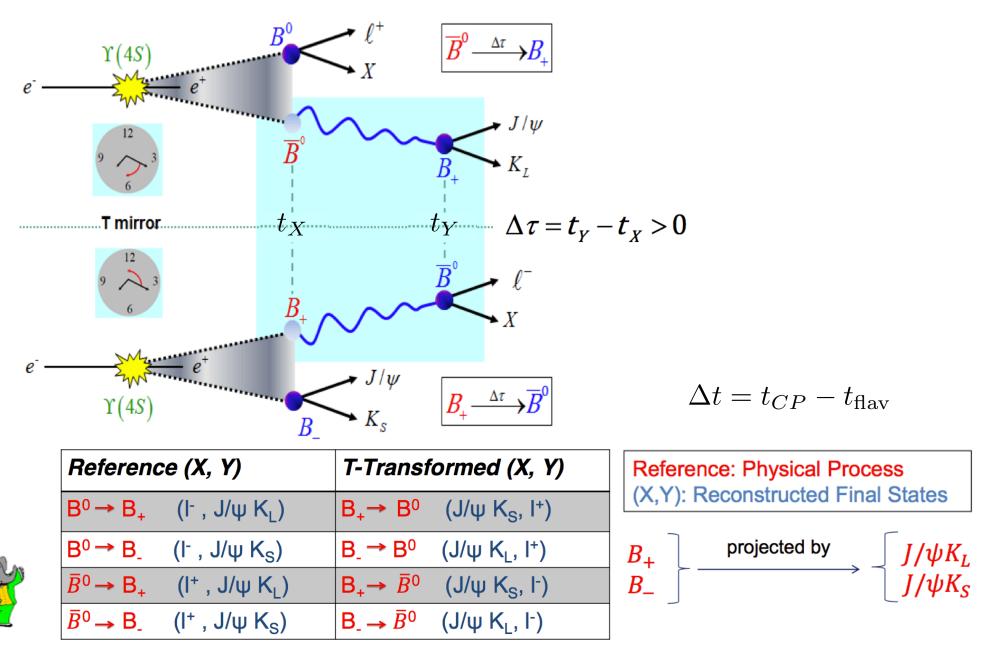
$$x_{\pm} = \operatorname{Re}[r_B e^{i(\delta_B \pm \gamma)}]$$
$$y_{\pm} = \operatorname{Im}[r_B e^{i(\delta_B \pm \gamma)}]$$

$$A(B^{-} \to D^{0}K^{-}) = A_{c}e^{i\delta_{c}} \qquad r_{B} = A_{u}/A_{c}$$
$$A(B^{-} \to \overline{D}^{0}K^{-}) = A_{u}e^{i(\delta_{u}-\gamma)} \qquad \delta_{B} = \delta_{u} - \delta_{c}$$

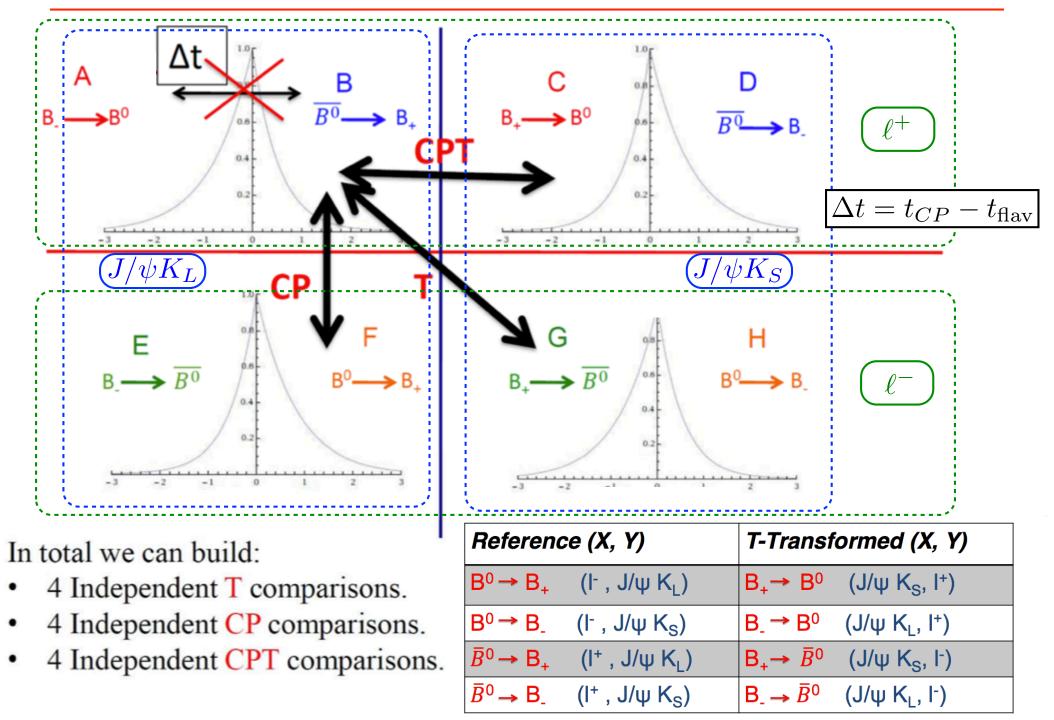
- Use frequentist approach to obtain 1D confidence intervals in a scan of gamma $\chi^2(\gamma, \mathbf{u}) \equiv -2\Delta \ln \mathcal{L}(\gamma, \mathbf{u})$ $\equiv -2[\ln \mathcal{L}(\gamma, \mathbf{u}) - \ln \mathcal{L}_{\max}]$
- Change in chi2 is converted into 1-C.L. using Monte Carlo approach that accounts for non-gaussian behavior
- 5.9σ significance of *CP* violation (vs. 3.9σ for GGSZ only)
- Our 1σ and 2σ constraints have not improved, but our constraints are better at larger # of σ

 $\gamma = (69^{+17}_{-16})^{\circ}$

T Violation Measurement I

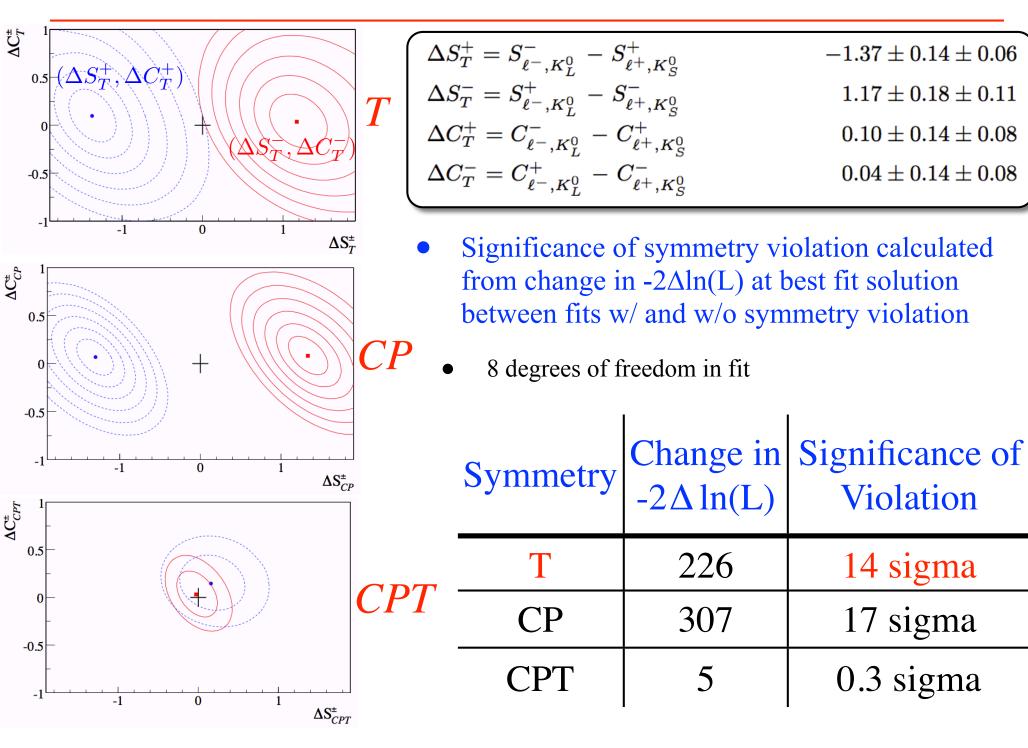

- Direct measurement of T violation independent of assumptions about *CPT*
- Takes advantage of the fact that B-mesons are produced as entangled pairs in $\Upsilon(4S)$ decays
 - Can be expressed in terms of either flavor-eigenstates, B^0 and \overline{B}^0 , or the states B_+ and B_-
- The states B_+ and B_- are tagged by decays to $J/\psi K_L$ (*CP*-even) and $J/\psi K_S$ (*CP*-odd), respectively
- Flavor eigenstates can be tagged by semileptonic B decays to $\ell^+ X$ and $\ell^- X$
- Search for T violation by comparing rates for transitions between flavor and *CP* states with the rates for the time-reversed processes

$$A_T = \frac{P(a \to b) - P(b \to a)}{P(a \to b) + P(b \to a)}$$


T Violation Measurement II

• Example decay sequence:

15


T Violation Measurement III

T Violation Measurement IV

 $\Delta t = t_{CP} - t_{\text{flav}}$ $g_{\alpha,\beta}^{\pm}(\Delta\tau) \propto e^{-\Gamma\Delta\tau} \{1 + S_{\alpha,\beta}^{\pm} \sin(\Delta m_d \Delta\tau) + C_{\alpha,\beta}^{\pm} \cos(\Delta m_d \Delta\tau)\} \\ \alpha \in \{\ell^+, \ell^-\} \quad , \quad \beta \in \{K_S, K_L\}$ $S^+_{\ell^+, K_S}$ $S^-_{\ell^+,K_S}$ ΔS^+_{CPT} $B_- \to B^0$ ΔS_{CPT}^{-} ℓ^+ $\overline{B}{}^0 \to B_+$ $B_+ o B^0$ $\overline{B}{}^0
ightarrow B_-$ -CPTCPT $\Delta S_T^ B^0 o B_+$ ΔS^-_{CP} $B_+ o \overline B^0$ ΔS_{CP}^+ ΔS_T^+ $B_- \rightarrow \overline{B}{}^0$ $B^0 \rightarrow B_ (\overline{J/\psi K_L})$ $(J/\psi K_L)$ $\overline{J/\psi K_S}$ $\Delta S_T^- = S_{\ell^-, K_L^0}^+ - S_{\ell^+, K_S^0}^-$

T Violation Measurement V

Conclusions

- We have performed an update of our alpha measurement in $B^0 \to (\rho \pi)^0$ decays using the full BaBar dataset
 - Significantly, studies reveal that alpha is not robustly extracted with current statistical significance, though other physics parameters are robust
- A CPV analysis in the mode $B^0 \rightarrow D^{*+}D^{*-}$ using partial reconstruction has obtained results consistent with previous BaBar and Belle measurements
- By combining gamma measurements in various $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$ modes, we have extracted $\gamma = (69^{+17}_{-16})^{\circ}$, consistent with SM predictions
- We have measured *T*-violating parameters in the time evolution of neutral *B* mesons and observed *T*-violation at 14 sigma significance
 - This is the first direct observation of *T* violation through the exchange of initial and final states connected only by *T*

