Measurement of ϕ_s at LHCb

Olivier Leroy

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

on behalf of the LHCb collaboration

Meeting of the American Physical Society, Division of Particles and Fields (DPF) August 13 – 17, 2013, Santa Cruz, USA

Introduction

• WHAT: interference between B_s^0 decay to $J/\psi\phi$ either directly or via $B_s^0 - \overline{B}_s^0$ oscillation gives rise to a CP violating phase $\phi_s^{J/\psi\phi} \equiv \phi_s = \phi_M - 2\phi_D$

• WHY:

- **()** in SM, $\phi_s \simeq -2\beta_s = -(0.0368 \pm 0.0014) \, \text{rad}^{\dagger}$, $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$
- 2 in presence of NP in the mixing box, ϕ_s can be larger
- HOW: tagged time-dependent angular analysis. Fit differential decay rates (for B_s^0 and \overline{B}_s^0):

$$\frac{\mathrm{d}^{4}\Gamma(B_{s}^{0}\to J/\psi\phi)}{\mathrm{d}t\,\mathrm{d}\cos\theta_{\mu}\,\mathrm{d}\varphi_{h}\,\mathrm{d}\cos\theta_{K}}=f(\phi_{s},\Delta\Gamma_{s},\Gamma_{s},\Delta m_{s},|A_{\perp}|,|A_{\parallel}|,|A_{S}|,\delta_{\perp},\delta_{\parallel},...)$$

[†] CKMfitter

Outline

Phenomenology

- 2 Selection of $B_s^0 \rightarrow J/\psi K^+ K^-$
- Obcay time

Angles

- 5 Initial flavour tagging
- 6 Fit and systematics
 - Conclusions and prospects

Time evolution of $B_s^0 - \overline{B}_s^0$ system:

$$i\frac{d}{dt} \left(\begin{array}{c} |B_{s}^{0}(t)\rangle \\ |\overline{B}_{s}^{0}(t)\rangle \end{array} \right) = \left(\hat{M} - \frac{i}{2}\hat{\Gamma} \right) \left(\begin{array}{c} |B_{s}^{0}(t)\rangle \\ |\overline{B}_{s}^{0}(t)\rangle \end{array} \right), \quad \hat{M} = \left(\begin{array}{c} M_{B_{s}^{0}} & M_{12} \\ M_{12}^{*} & M_{B_{s}^{0}} \end{array} \right), \quad \hat{\Gamma} = \left(\begin{array}{c} \Gamma_{s} & \Gamma_{12} \\ \Gamma_{12}^{*} & \Gamma_{s} \end{array} \right)$$

Diagonalization of the mass and decay matrices gives the mass eigenstates:

$$B_{\mathrm{H}} = p |B_{s}^{0}\rangle + q |\overline{B}_{s}^{0}\rangle$$
, $B_{\mathrm{L}} = p |B_{s}^{0}\rangle - q |\overline{B}_{s}^{0}\rangle$; $|p|^{2} + |q|^{2} = 1$

with the corresponding masses $M_{\rm H}$, $M_{\rm L}$ and decay rates $\Gamma_{\rm H}$, $\Gamma_{\rm L}$

We defined: $\Delta m_{\rm s} = M_{\rm H} - M_{\rm L}$, $\Delta \Gamma_s = \Gamma_{\rm L} - \Gamma_{\rm H}$, $\phi_M = \arg(M_{12})$

Phenomenology (II)

- $B_s^0 \rightarrow J/\psi K^+ K^-$ proceeds predominantly via $B_s^0 \rightarrow J/\psi \phi$, with $\phi \rightarrow K^+ K^-$, i.e. P-wave
- Small component with K^+K^- in S-wave
- Decay decomposed into 4 amplitudes: three P-waves, A₀, A_{||}, A_⊥ and one S-wave, A_S. Final state is a mixture of CP-even (0, ||) and CP-odd (⊥, S)

$$\frac{\mathrm{d}^{4}\Gamma(B^{0}_{s}\rightarrow J/\psi K^{+}K^{-})}{\mathrm{d}t\,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_{k}(t)\,f_{k}(\Omega)$$

 $h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$

- N_k , a_k , b_k , c_k , d_k are functions of the 4 amplitudes, strong phases and ϕ_s
- For B⁰_s, change sign of c_k and d_k
 → significant gain when flavour tagging is used
- *f_k* are functions of 3 angles between the decaying particles
- Decay rates depend on 11 physics parameters
- Decay rates invariant under

 $(\phi_s, \Delta\Gamma_s, \delta_0, \delta_{\parallel}, \delta_{\perp}, \delta_{S}) \longmapsto (\pi - \phi_s, -\Delta\Gamma_s, -\delta_0, -\delta_{\parallel}, \pi - \delta_{\perp}, -\delta_{S}) \rightarrow 2$ -fold ambiguity

Selection of $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)K^+K^-$

- Cut-based selection, using 1 fb⁻¹ taken in 2011 at $\sqrt{s} = 7 \text{ TeV}$
- Relies on excellent performances of the LHCb detector: $\sigma(IP) \sim 15\mu m$, $\delta p/p \sim 0.45\%$, very good $K \pi$ separation

27617 $B_s^0 \rightarrow J/\psi K^+ K^-$ candidates, very small background

Decay time resolution

Good decay time resolution essential to resolve the fast $B_s^0 - \overline{B}_s^0$ oscillation $(2\pi/\Delta m_s \simeq 350 \text{ fs})$.

Use per-event decay time error, with scale factor determined on real data, using prompt $J/\psi K^+ K^-$ combinations

Effective decay time resolution is 45 fs ($\ll 2\pi/\Delta m_s$)

- 85% of our sample has a nearly flat decay time acceptance.
- 15% is exclusively triggered using muon IP cuts, which distort the decay time acceptance.
- Decay time acceptance determined using a prescaled unbiased trigger sample.

Angular acceptance

[PRD 87, 112010 (2013)]

Forward geometry of LHCb + selection cuts \Rightarrow distorted angular acceptance Determined using MC

Tag initial B_s^0 flavour

•
$$\varepsilon_{\text{tag}} = \frac{R+W}{R+W+U}$$
, $\omega = \frac{W}{R+W}$, Tagging power = $\varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} D^2 = \varepsilon_{\text{tag}} (1 - 2\omega)^2$
~ effective reduction of signal sample size due to imperfect tagging

- Mistag fraction, ω, estimated event by event
- Tagging algorithm optimized on MC and calibrated on real data with B⁰ → D^{*−} μ⁺ν_μ, B⁺ → J/ψK⁺, B⁰ → J/ψK^{*0} and B⁰_s → D[−]_s π⁺

Flavour tagging calibration

Calibration on real data, using flavor specific control channels Measured true mistag versus estimated mistag probability:

$$\omega(\eta) = p_0 + rac{\Delta p_0}{2} + p_1(\eta - \langle \eta \rangle), \qquad ar{\omega}(\eta) = p_0 - rac{\Delta p_0}{2} + p_1(\eta - \langle \eta
angle)$$

Calibration	PO	P1	$\langle \eta \rangle$	Δp_0
OS	$0.392 \pm 0.002 \pm 0.008$	$1.000 \pm 0.020 \pm 0.012$	0.392	0.011 ± 0.003
SSK	$0.350 \pm 0.015 \pm 0.007$	$1.000 \pm 0.160 \pm 0.020$	0.350	-0.019 ± 0.005

	$\varepsilon_{\mathrm{tag}}$ (%)	ω (%)	$\varepsilon_{ m tag}(1-2\omega)^2$ (%)
OS	33.00	36.83	2.29
SSK	10.26	35.27	0.89
Combined	39.36	35.90	3.13

Unbinned maximum likelihood fit (t, m, angles, flavour)

Source	Γs	$\Delta\Gamma_s$	$ A_{\perp}(t) ^{2}$	$ A_0(t) ^2$	δ_{\parallel}	δ_{\perp}	ϕ_s	$ \lambda $
	[ps ⁻¹]	[ps ⁻¹]			[rad]	[rad]	[rad]	
Stat. uncertainty	0.0048	0.016	0.0086	0.0061	+0.13 -0.21	0.22	0.091	0.031
Background subtraction	0.0041	0.002	-	0.0031	0.03	0.02	0.003	0.003
$B^0 ightarrow J/\psi K^{*0}$ background	-	0.001	0.0030	0.0001	0.01	0.02	0.004	0.005
Ang. acc. reweighting	0.0007	-	0.0052	0.0091	0.07	0.05	0.003	0.020
Ang. acc. statistical	0.0002	-	0.0020	0.0010	0.03	0.04	0.007	0.006
Lower decay time acc. model	0.0023	0.002	-	-	-	-	-	-
Upper decay time acc. model	0.0040	-	-	-	-	-	-	-
Length and mom. scales	0.0002	-	-	-	-	-	-	-
Fit bias	-	-	0.0010	-	-	-	-	-
Decay-time resolution offset	-	-	-	-	-	0.04	0.006	-
Quadratic sum of syst.	0.0063	0.003	0.0064	0.0097	0.08	0.08	0.011	0.022
Total uncertainties	0.0079	0.016	0.0107	0.0114	+0.15 -0.23	0.23	0.092	0.038

Very small systematics uncertainty on ϕ_s

• $B_s^0 \rightarrow J/\psi K^+ K^-$ alone:

$$\begin{split} \phi_s &= 0.07 \ \pm 0.09 \ (\text{stat}) \pm 0.01 \ (\text{syst}) \ \text{rad} \\ \Gamma_s &\equiv (\Gamma_L + \Gamma_H)/2 \ = 0.663 \pm 0.005 \ (\text{stat}) \pm 0.006 \ (\text{syst}) \ \text{ps}^{-1} \\ \Delta\Gamma_s &\equiv \Gamma_L - \Gamma_H \ = 0.100 \pm 0.016 \ (\text{stat}) \pm 0.003 \ (\text{syst}) \ \text{ps}^{-1} \end{split}$$

- World most precise measurements!
- Combined analysis with $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ [PLB 713 (2012) 378] Final state is > 98% CP-odd [PRD86 052006 (2012)], no angular analysis required:

ϕ_s	= 0.01	\pm 0.07	(stat) \pm	0.01	(syst)	rad
Γs	= 0.661	\pm 0.004	(stat) \pm	0.006	(syst)	ps^{-1}
$\Delta\Gamma_s$	= 0.106	$\pm \ 0.011$	(stat) \pm	0.007	(syst)	ps^{-1}

Compatible with SM so far

By-product 1: standalone $\Delta m_{\rm s}$ measurement

 $\Delta m_{\rm s} = 17.70 \pm 0.10$ (stat) ± 0.01 (syst) ps⁻¹ [PRD 87, 112010 (2013)]

compatible with LHCb, New J. Phys. 15 (2013) 053021, 1 fb⁻¹, $B_s^0 \to D_s^- \pi^+$: $\Delta m_s = 17.768 \pm 0.023 \text{ (stat)} \pm 0.006 \text{ (syst) } \text{ps}^{-1}$

By-product 2: resolving the sign of $\Delta\Gamma_s$

[PRD 87, 112010 (2013)]

Reminder: decay rates invariant under

 $(\phi_{s}, \Delta \Gamma_{s}, \delta_{0}, \delta_{\parallel}, \delta_{\perp}, \delta_{S}) \longmapsto (\pi - \phi_{s}, -\Delta \Gamma_{s}, -\delta_{0}, -\delta_{\parallel}, \pi - \delta_{\perp}, -\delta_{S})$

- Expect:
 - P-wave phase increases rapidly with *m_{KK}*
 - S-wave phase varies slowly
 - hence $\delta_{\mathcal{S}} \delta_{\perp}$ decreases
- Observe:
 - falling phase trend (blue circles), hence $\Delta\Gamma_s > 0$

Comparison with other

[HFAG, preliminary]

• With 1 fb⁻¹, using $B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$, LHCb performed the world most precise measurements of:

ϕ_s	= 0.01	\pm 0.07	(stat) \pm	0.01	(syst)	rad,
Γ _s	= 0.661	\pm 0.004	(stat) \pm	0.006	(syst)	ps^{-1}
$\Delta\Gamma_s$	= 0.106	± 0.011	(stat) \pm	0.007	(syst)	ps^{-1}

- Compatible with Standard Model so far
 - \rightarrow Stronger constraints than ever on possible SM extensions in the $B_s^0 - \overline{B}_s^0$ mixing phase and still room for NP!
- Expected total uncertainty on ϕ_s :
 - by the end of this year, using $3\,{\rm fb}^{-1}$: $\sim 0.05\,{\rm rad}$
 - by the end of LHCb upgrade: $\sim 0.008\,\mathrm{rad}$

Backup

Page 21 Phenomenology Page 30 $B_s^0 \rightarrow J/\psi K^+ K^-$ analysis Page 48 Related CPV Page 59 Comparisons with other Page 64 LHCb detector and upgrade The neutral B_q (q = d, s) system is described by the following equation

$$irac{d}{dt}\left(egin{array}{c} |B_q(t)
angle\ |ar{B}_q(t)
angle\ \end{array}
ight)=\left(\hat{M}^q-rac{i}{2}\hat{\Gamma}^q
ight)\left(egin{array}{c} |B_q(t)
angle\ |ar{B}_q(t)
angle\ \end{array}
ight)$$

The famous box diagrams give rise to off-diagonal elements M_{12}^q and Γ_{12}^q in the mass matrix \hat{M}^q and the decay rate matrix $\hat{\Gamma}^q$

Diagonalization of \hat{M}^q and $\hat{\Gamma}^q$ gives the mass eigenstates

CP-odd:
$$B_H := p B + q \bar{B}$$
, CP-even: $B_L := p B - q \bar{B}$
with $|p|^2 + |q|^2 = 1$

with the corresponding masses M_{H}^{q} , M_{L}^{q} and decay rates Γ_{H}^{q} , Γ_{L}^{q}

B mixing and lifetime II

 $|M_{12}^q|$, $|\Gamma_{12}^q|$ and $\phi_{12q} = \arg(-M_{12}^q/\Gamma_{12}^q)$ are related to three observables:

- <u>Mass difference</u>: $\Delta M_q := M_H^q M_L^q = 2|M_{12}^q| \left(1 + \frac{1}{8} \frac{|\Gamma_{12}^q|^2}{|M_{12}^q|^2} \sin^2 \phi_{12q} + ...\right)$ $|M_{12}^q|$: heavy virtual particles: t, SUSY, ...
- Decay rate difference: $\Delta\Gamma_q := \Gamma_L^q - \Gamma_H^q = 2|\Gamma_{12}^q| \cos \phi_{12q} \left(1 - \frac{1}{8} \frac{|\Gamma_{12}^q|^2}{|M_{12}^q|^2} \sin^2 \phi_{12q} + ...\right)$ $|\Gamma_{12}^q| : \text{ light real particles: } u, c, ... \text{ no NP - below hadronic uncertainties}$

• Flavour specific / semi leptonic CP asymmetries:

$$a_{sl}^{q} = \operatorname{Im} \frac{\Gamma_{12}^{q}}{M_{12}^{q}} + \mathcal{O} \left(\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right)^{2} = \frac{\Delta\Gamma_{q}}{\Delta M_{q}} \tan \phi_{12q} + \mathcal{O} \left(\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right)^{2}$$

New physics effects

General parametrization of new physics effects in mixing

$$\Gamma_{12,s} = \Gamma_{12,s}^{\text{SM}}, \qquad M_{12,s} = M_{12,s}^{\text{SM}} \cdot \Delta_s; \quad \Delta_s = |\Delta_s| e^{i\phi_s^{\Delta}}$$

leads to the following relations for observables

$$\begin{split} \Delta M_s &= 2|M_{12,s}^{\mathrm{SM}}| \cdot |\Delta_s| \\ \Delta \Gamma_s &= 2|\Gamma_{12,s}| \cdot \cos\left(\phi_{12s}^{\mathrm{SM}} + \phi_s^{\Delta}\right) \\ a_{fs}^s &= \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\mathrm{SM}}|} \cdot \frac{\sin\left(\phi_{12s}^{\mathrm{SM}} + \phi_s^{\Delta}\right)}{|\Delta_s|} \\ \phi_s^{J/\Psi\phi} &= -2\beta_s + \phi_s^{\Delta} + \delta_{\mathrm{Peng.}}^{\mathrm{SM}} + \delta_{\mathrm{Peng.}}^{\mathrm{NP}} \end{split}$$

Remember: $\phi_{12s}^{SM} = \arg(-M_{12}^s/\Gamma_{12}^s)$ and $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$

Constraints on New physics [D. Straub, arXiv:1107.0266]

Correlation between the branching ratio of $B_s^0 \to \mu^+ \mu^-$ and the mixing-induced CP asymmetry $-\sin \phi_s$ in the SM4, the two-Higgs doublet model with flavour blind phases and three SUSY favour models. The SM point is marked by a star.

NP in B_s^0 mixing

$$\begin{split} M_{12}^{s} &= M_{12}^{\text{SM},s} \Delta_{s} , \quad \Delta_{s} = |\Delta_{s}| e^{i\phi_{s}^{\Delta}} \\ Re(\Delta_{s}) &= 0.940^{+0.199}_{-0.086} \text{ at } 68\% CL \\ Im(\Delta_{s}) &= -0.04^{+0.11}_{-0.14} \text{ at } 68\% CL \end{split}$$

[CKMfitter], after ICHEP2012, updated of arXiv:1203.0238v2. [LHCb-CONF-2012-022] ASLs included.

New physics in B_s^0 -mixing

- + Examples of NP affecting Φ and being compatible with ${\Delta}m_s{=}17.8 ps^{{-}1}$
 - hep-ph/0703117 (little higgs model with T parity)
 - hep-ph/0703112 (susy, extra Z', little Higss)
 - Hou et al., hep-ph/0810.3396 (4th generation; top')
 - ...

Example of NP models compatible with all current measurements and modifying ϕ_s : A. J. Buras et al. arXiv:1211.1237 Other recent articles: arXiv:1204.3872 arXiv:1207.0688

$$\begin{split} \phi_{12} &= \arg\left[-M_{12}/\Gamma_{12}\right] \\ \Delta\Gamma_{s} &= 2|\Gamma_{12}|\cos\phi_{12} + \mathcal{O}\left(\left|\frac{\Gamma_{12}}{M_{12}}\right|^{2}\right) \\ \phi_{12}^{SM} &= 0.0038 \pm 0.0010 \text{ [Lenz]} \\ \phi_{12} &= \phi_{12}^{SM} + \phi_{12}^{NP} \\ A_{SL}^{s} &= \Im\left(\frac{\Gamma_{12}}{M_{12}}\right) + \mathcal{O}\left(\left|\frac{\Gamma_{12}}{M_{12}}\right|^{2}\right) = \frac{\Delta\Gamma_{s}}{\Delta m_{s}} \tan\phi_{12} + \mathcal{O}\left(\left|\frac{\Gamma_{12}}{M_{12}}\right|^{2}\right) \\ (\phi_{s}^{c\bar{c}s})^{SM} &= -2\beta_{s} = -0.0368 \pm 0.0014, \quad \beta_{s} = \arg\left[-\left(V_{ts}V_{tb}^{*}\right)/\left(V_{cs}V_{cb}^{*}\right)\right] \\ \phi_{s}^{c\bar{c}s} &= -2\beta_{s} + \phi_{12}^{NP} \\ \phi_{12} &= \phi_{12}^{SM} + 2\beta_{s} + \phi_{s}^{c\bar{c}s} \end{split}$$

P ightarrow VV decays

- B_s^0 is a pseudoscalar meson ($J^P = 1^-$), ϕ and J/ψ are vector mesons ($J^P = 1^-$)
- Total angular momentum conservation \Rightarrow in the B_s^0 rest frame, ϕ and J/ψ have relative orbital momentum ℓ =0, 1, 2
- Since $CP|J/\psi\phi\rangle = (-1)^{\ell}|J/\psi\phi\rangle$, final state is a mixture of CP-even ($\ell = 0, 2$) and CP-odd ($\ell = 1$)
- Decompose decay amplitudes in terms of linear polarization, when J/ψ and ϕ are:
 - A₀: longitudinally polarized (CP-even)
 - A_{\perp} : transversely polarized and \perp to each other (CP-odd)
 - A_{\parallel} : transversely polarized and \parallel to each other (CP-even)
- B⁰_s → J/ψK⁺K⁻ can also be produced with K⁺K⁻ pairs in an S-wave configuration (CP-odd).
- \rightarrow 3 angles describe directions of final decay products $J/\psi \rightarrow \mu^+\mu^-$ and $\phi \rightarrow K^+K^-$

Decay rate for $B_s^0 \rightarrow J/\psi K^+ K^-$

$$\frac{\mathrm{d}^4 \Gamma(B^0_s \to J/\psi K^+ K^-)}{\mathrm{d} t \, \mathrm{d} \Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

 $h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2} \Delta \Gamma_s t\right) + b_k \sinh\left(\frac{1}{2} \Delta \Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$

k	$f_k(\theta_{\mu}, \theta_K, \varphi_h)$	Nk	a _k	b _k	c _k	d _k
1	$2 \cos^2 \theta_K \sin^2 \theta_\mu$	$ A_0(0) ^2$	1	D	С	- <i>S</i>
2	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \cos^2 \varphi_h\right)$	$ A_{ }(0) ^2$	1	D	С	-S
3	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \varphi_h\right)$	$ A_{\perp}^{''}(0) ^2$	1	-D	С	S
4	$\sin^2 \theta_K \sin^2 \theta_\mu \sin 2\varphi_h$	$ A_{ }(0)A_{\perp}(0) $	$C \sin(\delta_{\perp} - \delta_{\parallel})$	$S\cos(\delta_{\perp} - \delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\theta_K\sin 2\theta_\mu\cos \varphi_h$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel} - \delta_0)$	$D\cos(\delta_{\parallel} - \delta_0)$	$C\cos(\delta_{\parallel} - \delta_{0})$	$-S\cos(\delta_{\parallel}-\delta_{0})$
6	$-\frac{1}{2}\sqrt{2}\sin 2\theta_K\sin 2\theta_\mu\sin \varphi_h$	$ A_0(0)A_{\perp}(0) $	$C\sin(\delta_{\perp} - \delta_0)$	$S\cos(\delta_{\perp} - \delta_0)$	$sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp} - \delta_0)$
7	$\frac{2}{3}\overline{\sin^2}\theta_{\mu}$	$ A_{\rm S}(0) ^2$	1	-D	С	S
8	$\frac{1}{3}\sqrt{6}\sin\theta_K\sin2\theta_\mu\cos\varphi_h$	$ A_{\rm S}(0)A_{ }(0) $	$C \cos(\delta_{\parallel} - \delta_{S})$	$S \sin(\delta_{\parallel} - \delta_{S})$	$\cos(\delta_{\parallel} - \delta_{S})$	$D \sin(\delta_{\parallel} - \delta_{S})$
9	$-\frac{1}{3}\sqrt{6}\sin\theta_K\sin 2\theta_\mu\sin\varphi_h$	$ A_{\rm S}(0)A_{\perp}(0) $	$sin(\delta_{\perp} - \delta_{S})$	$-D\sin(\delta_{\perp}-\delta_{S})$	$C\sin(\delta_{\perp} - \delta_{S})$	$S \sin(\delta_{\perp} - \delta_S)$
10	$\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$	$ A_{\rm S}(0)A_{\rm 0}(0) $	$C\cos(\delta_0 - \delta_S)$	$S\sin(\delta_0 - \delta_S)$	$\cos(\delta_0 - \delta_S)$	$D\sin(\delta_0 - \delta_S)$

$$C \equiv \frac{1 - |\lambda|^2}{1 + |\lambda|^2}, \qquad S \equiv \frac{2\Im(\lambda)}{1 + |\lambda|^2}, \qquad D \equiv \frac{-2\Re(\lambda)}{1 + |\lambda|^2}.$$
$$\lambda_i \equiv \frac{q}{\rho} \frac{\bar{A}_i}{A_i}, \quad \eta_i = +1 \text{ for } i \in \{0, \|\} \text{ and } -1 \text{ for } i \in \{\bot, S\}$$

$$\lambda_i = \eta_i \lambda$$
, $\phi_s \equiv -\arg(\lambda)$

Olivier Leroy (CPPM)

Measurement of ϕ_S at LHCb

Penguin pollution in $B_s^0 \rightarrow J/\psi\phi$

• In the SM, $B_s \rightarrow J/\psi \phi$ decay is dominated by a single weak phase: $V_{cs}V_{cb}^*$

- Various penguin pollution estimates:
 - δP~10⁴ [H. Boos et al., Phys.Rev. D70 (2004) 036006]
 - δP~10³ [M. Gronau et al., arXiv:0812.4796]
 - δP up to ~0.1 [S. Faller et al., arXiv:0810.4248v1]

Penguin pollution in $B_s^0 \rightarrow J/\psi \phi$

[S. Faller et al. arXiv:0810.4248]

$$\bar{b} \to \bar{s}c\bar{c}$$

Penguins suppressed by λ^2

$$A(B_s^0 \to (J/\psi\phi)_f) = \left(1 - \frac{\lambda^2}{2}\right) \mathcal{A}_f \left[1 + \epsilon a_f e^{i\theta_f} e^{i\gamma}\right] \qquad \epsilon \equiv \lambda^2 / (1 - \lambda^2)$$

$$\bar{b} \to \bar{d}c\bar{c}$$

Penguins NOT suppressed wrt tree

$$A(B_s^0 \to (J/\psi \bar{K}^{*0})_f) = \lambda \mathcal{A}'_f \left[1 - a'_f e^{i\theta'_f} e^{i\gamma} \right]$$

- In LHC, we have started to apply the method proposed in [S. Faller et al. arXiv:0810.4248]
- LHCb, PRD 86, 071102(R) (2012): using only 0.37 fb⁻¹, we measure $\mathcal{B}(B^0_s \to J/\psi \overline{K}^{*0}) = (4.4^{+0.5}_{-0.4} \pm 0.8) \times 10^{-5}$ and the polarization fractions: $|A_0(0)|^2 = 0.50 \pm 0.08 \pm 0.02$, $|A_{\parallel}(0)|^2 = 0.19^{+0.10}_{-0.08} \pm 0.02$.
- Update with 3 fb⁻¹ongoing and measurement of direct CPV in $B_s^0 \rightarrow J/\psi \overline{K}^{*0}$
- Other approaches to reduce penguin pollution:
 B. Bhattacharya et al., Int.J.Mod.Phys. A28 (2013) 1350063.
 M. Jung, arXiv:1212.4789.

A way to introduce β_s

 V_{CKM} can be written with 4 independent parameters:

the « usual » Wolfenstein parameters λ, Α, ρ, η

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- Or $|V_{us}|$, $|V_{ub}|$, $|V_{cb}|$, $|V_{td}|$ [Branco 1988]
- Or 4 independent phases: γ, β, β_s, β_K

$$\begin{split} \gamma &= \arg\left(-\frac{V_{\rm td}V_{\rm tb}^{\rm h}}{V_{\rm cd}V_{\rm cb}^{\rm s}}\right)\\ \beta &= \arg\left(-\frac{V_{\rm cd}V_{\rm cb}^{\rm s}}{V_{\rm td}V_{\rm tb}^{\rm s}}\right)\\ \beta_{\rm S} &= \arg\left(-\frac{V_{\rm tS}V_{\rm tb}^{\rm s}}{V_{\rm cS}V_{\rm cb}^{\rm s}}\right)\\ \beta_{\rm K} &= \arg\left(-\frac{V_{\rm us}V_{\rm ub}^{\rm s}}{V_{\rm cs}V_{\rm cd}^{\rm s}}\right) \end{split}$$

- References:
 - > G. C. Branco and L. Lavoura, Phys. Lett. B 208, 123 (1988).
 - > G. C. Branco et al., CP violation, Oxford University Press, (1999)
 - R. Aleksan, B. Kayser, and D. London. Determining the Quark Mixing Matrix from CP-Violating Asymmetries. *Phys. Rev. Lett.*, 73:18.20, 1994, hep-ph/9403341
 - > See also: J. Silva, hep-ph/0410351

b-d and b-s unitarity triangles

Decay mode	Cut parameter	Stripping	Final selection
all tracks	$\chi^2_{ m track}/ m nDoF$ clone distance	< 5 -	< 4 > 5000
$J/\psi \rightarrow \mu^+\mu^-$	$ \begin{array}{c} \Delta \ln \mathcal{L}_{\mu\pi} \\ \textit{min}(p_{T}(\mu^{+}), p_{T}(\mu^{-})) \\ \chi^{2}_{vtx} / \text{nDoF}(J/\psi) \\ M(\mu^{+}\mu^{-}) - M(J/\psi) \end{array} $	> 0 - < 16 < $80 \text{ MeV/}c^2$	> 0 > 0.5 GeV/c < 16 \in [3030, 3150] MeV/c ²
$\phi \to K^+ K^-$	$\frac{\Delta \ln \mathcal{L}_{K\pi}}{p_{\rm T}(\phi)}$ $\frac{M(\phi)}{\chi^2_{\rm vtx}/{\rm nDoF}(\phi)}$	$ > -2 > 1 \text{ GeV/c} \in [980, 1050] \text{ MeV/c}^2 < 16 $	> 0 > 1 GeV/c \in [990, 1050] MeV/c ² < 16
$B_S^0 o J/\psi \phi$	$\begin{array}{c} & \mathcal{M}(\mathcal{B}^{0}_{S}) \\ \chi^{2}_{VTx}/nDoF(\mathcal{B}^{0}_{S}) \\ \chi^{2}_{DTF(B+PV)}/nDoF(\mathcal{B}^{0}_{S}) \\ \chi^{2}_{IP}(\mathcal{B}^{0}_{S}) \\ \chi^{2}_{IP}(\mathcal{B}^{0}_{S}) \\ \chi^{1}_{IP,next}(\mathcal{B}^{0}_{S}) \end{array}$	\in [5200, 5550] MeV/ c^2 < 10 - -	\in [5200, 5550] MeV/ c^2 < 10 < 5 < 25 > 50 [0 3, 14, 0] ps

Selection

Background subtracted invariant mass distributions of the $\mu^+\mu^-$ (left) and K^+K^- (right) systems in the selected sample of $B_S^0 \rightarrow J/\psi K^+K^-$ candidates (full $m(J/\psi K^+K^-)$ range). The solid blue line represents the fit to the data points.

Background-subtracted kaon (a) and muon (b) momentum distributions for $B_s^0 \rightarrow J/\psi K^+ K^-$ signal events in data compared to simulated $B_s^0 \rightarrow J/\psi \phi$ signal events. The distributions are normalised to the same area. A larger deviation is visible for kaons. Unbinned maximum likelihhod fit

$$-\ln \mathcal{L} = -\alpha \sum_{\text{events } i} W_i \ln \mathcal{S}$$

- W_i = signal sWeights, using sPlot on the $B_s^0 \rightarrow J/\psi K^+ K^-$ invariant mass, fitted 2G+Exp
- $\alpha = \sum_{i} W_{i} / \sum_{i} W_{i}^{2}$ is used to include the effect of the weights in the determination of the uncertainties [arXiv:0905.0724]

$$S(\lambda, t, \Omega) = \epsilon(t, \Omega) \cdot \left[\left(\frac{1+qD}{2} \cdot P_B(\lambda, t, \Omega) + \frac{1-qD}{2} \cdot \overline{P_B}(\lambda, t, \Omega) \right) \otimes R_t \right]$$
Ingredients:
Proper time and angular acceptance tagging Proper time resolution

$B^0_s ightarrow J\!/\!\psi K^+K^-$ fit, S-P correction factors (PRD 87, 112010 (2013))

- In each *m_{KK}* bin, variation of the S-wave lineshape (assumed ~ uniform) wrt the P-wave lineshape (relativistic Breit-Wigner)
- In each m_{KK} bin, compute:

$$\int_{m^L}^{m^H} p s^* \, \mathrm{d}m(\mathcal{K}^+\mathcal{K}^-) = C_{\mathrm{SP}} e^{-i heta_{\mathrm{SP}}}$$

- Multiply f_8 , f_9 , and f_{10} by C_{CP}
- $\theta_{\rm SP}$ is absorbed in the measurements of $\delta_{\rm S} \delta_{\perp}$

Bins of $m(K^+K^-)$ used in the analysis and the C_{SP} correction factors for the S-wave interference term, assuming a uniform distribution of non-resonant K^+K^- contribution and a non-relativistic Breit-Wigner shape for the decays via the ϕ resonance.

$m(K^+K^-)$ bin [MeV/ c^2]	C _{SP}
990 - 1008	0.966
1008 - 1016	0.956
1016 - 1020	0.926
1020 - 1024	0.926
1024 - 1032	0.956
1032 - 1050	0.966

Parameter	Value	$\sigma_{ m stat}$	$\sigma_{ m sys}$
$\Gamma_s [ps^{-1}]$	0.661	0.004	0.006
$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	0.106	0.011	0.007
$ A_{\perp}(t) ^2$	0.246	0.007	0.006
$ A_0(t) ^2$	0.523	0.005	0.010
δ_{\parallel} [rad]	3.32	+0.13	0.08
δ_{\perp} [rad]	3.04	0.20	0.07
ϕ_s [rad]	0.01	0.07	0.01
$ \lambda $	0.93	0.03	0.02
 		·	·

Results of combined fit to the $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ datasets.

Results of the maximum likelihood fit for the S-wave parameters, with asymmetric statistical and symmetric systematic uncertainties.

$m(K^+K^-)$ bin [MeV/ c^2]	Parameter	Value	σ_{stat} (asymmetric)	σsyst
990 - 1008	FS	0.227	+0.081, -0.073	0.020
	$\delta_{S} - \delta_{\perp}$ [rad]	1.31	+0.78, -0.49	0.09
1008 - 1016	FS	0.067	+0.030, -0.027	0.009
	$\delta_{S} - \delta_{\perp}$ [rad]	0.77	+0.38, -0.23	0.08
1016 - 1020	FS	0.008	+0.014, -0.007	0.005
	$\delta_{S} - \delta_{\parallel}$ [rad]	0.51	+1.40, -0.30	0.20
1020 - 1024	FS	0.016	+0.012, -0.009	0.006
	$\delta_{S} - \delta_{\perp}$ [rad]	-0.51	+0.21, -0.35	0.15
1024 - 1032	FS	0.055	+0.027, -0.025	0.008
	$\delta_{S} - \delta_{\perp}$ [rad]	-0.46	+0.18, -0.26	0.05
1032 - 1050	FS	0.167	+0.043, -0.042	0.021
	$\delta_{S} - \delta_{\perp}$ [rad]	-0.65	+0.18, -0.22	0.06

Statistical and systematic uncertainties for S-wave fractions in bins of $m(K^+K^-)$.

Source	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6
	Fs	Fs	Fs	Fs	Fs	Fs
Stat. uncertainty	+0.081 -0.073	$^{+0.030}_{-0.027}$	$^{+0.014}_{-0.007}$	+0.012 -0.009	+0.027 -0.025	+0.043 -0.042
Background subtraction	0.014	0.003	0.001	0.002	0.004	0.006
$B^0 ightarrow J\!/\!\psi K^{st 0}$ background	0.010	0.006	0.001	0.001	0.002	0.018
Angular acc. reweighting	0.004	0.006	0.004	0.005	0.006	0.007
Angular acc. statistical	0.003	0.003	0.002	0.001	0.003	0.004
Fit bias	0.009	-	0.002	0.002	0.001	0.001
Quadratic sum of syst.	0.020	0.009	0.005	0.006	0.008	0.021
Total uncertainties	$^{+0.083}_{-0.076}$	$^{+0.031}_{-0.029}$	$^{+0.015}_{-0.009}$	$^{+0.013}_{-0.011}$	+0.028 -0.026	+0.048 -0.047

Statistical and systematic uncertainties for S-wave phases in bins of $m(K^+K^-)$.

Source	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6
	$\delta_{ m S} - \delta_{\perp}$	$\delta_{\rm S} - \delta_{\perp}$	$\delta_{\rm S} - \delta_{\perp}$	$\delta_{ m S} - \delta_{\perp}$	$\delta_{\rm S} - \delta_{\perp}$	$\delta_{ m S} - \delta_{\perp}$
	[rad]	[rad]	[rad]	[rad]	[rad]	[rad]
Stat. uncertainty	$^{+0.78}_{-0.49}$	+0.38 -0.23	$^{+1.40}_{-0.30}$	+0.21 -0.35	+0.18 -0.26	+0.18 -0.22
Background subtraction	0.03	0.02	-	0.03	0.01	0.01
$B^0 ightarrow J\!/\!\psi K^{st 0}$ background	0.08	0.04	0.08	0.01	0.01	0.05
Angular acc. reweighting	0.02	0.03	0.12	0.13	0.03	0.01
Angular acc. statistical	0.033	0.023	0.067	0.036	0.019	0.015
Fit bias	0.005	0.043	0.112	0.049	0.022	0.016
C _{SP} factors	0.007	0.028	0.049	0.025	0.021	0.020
Quadratic sum of syst.	0.09	0.08	0.20	0.15	0.05	0.06
Total uncertainties	$^{+0.79}_{-0.50}$	+0.39 -0.24	$^{+1.41}_{-0.36}$	$^{+0.26}_{-0.38}$	+0.19 -0.26	$^{+0.19}_{-0.23}$

Correlation matrix for the principal physics parameters, $B_s^0 \rightarrow J/\psi K^+ K^-$ only

[LHCb, PRD 87, 112010 (2013]

	Γs	$\Delta\Gamma_S$	$ A_{\perp}(t) ^2$	$ A_0(t) ^2$	δ	δ_{\perp}	ϕs	$ \lambda $
	[ps ⁻¹]	[ps ⁻¹]			[rad]	[rad]	[rad]	
Γ _S [ps ⁻¹]	1.00	- 0.39	0.37	-0.27	-0.09	-0.03	0.06	0.03
$\Delta \Gamma_{s} [ps^{-1}]$		1.00	-0.68	0.63	0.03	0.04	-0.04	0.00
$ A_{\perp}(t) ^2$			1.00	-0.58	-0.28	-0.09	0.08	-0.04
$ A_0(t) ^2$				1.00	-0.02	-0.00	-0.05	0.02
δ_{\parallel} [rad]					1.00	0.32	-0.03	0.05
δ_{\perp} [rad]						1.00	0.28	0.00
ϕ_s [rad]							1.00	0.04
$ \lambda $								1.00

- Acceptance at high decay time is due to time-dependent VELO reconstruction inefficiencies and some selection cuts.
- This acceptance is parametrised as $(1 + \beta t)$ with $\beta = (-8.3 \pm 4.0) \times 10^{-3} \text{ ps}^{-1}$, obtained from a mix of data and MC samples.
- Flavour tagging and time resolution uncertainties are included in the statistical errors.

1 fb $^{-1}$, 7421 \pm 105 $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ signal candidates

Mass distribution of the selected $J/\psi \pi^+ \pi^-$ combinations in the t_{odd} region. The blue solid curve shows the result of a fit with a double Gaussian signal (red solid curve) and several background components: combinatorial background (brown dotted line), background from $B^- \to J/\psi K^-$ and $J/\psi \pi^-$ (green short-dashed line), $\overline{B}^0 \to J/\psi \pi^+ \pi^-$ (purple dot-dashed), $\overline{B}^0_S \to J/\psi \eta'$ and $\overline{B}^0_S \to J/\psi \phi$ when $\phi \to \pi^+ \pi^- \pi^0$ (black dot-long-dashed), and $\overline{B}^0 \to J/\psi K^- \pi^+$ (light-blue long-dashed).

 $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

- $B^0_s
 ightarrow J\!/\!\psi \pi^+\pi^-$ final state is > 98% CP-odd, [LHCb, PRD86 052006 (2012)]
- No angular analysis required
- $\phi_s = -0.14^{+0.17}_{-0.16} \pm 0.01$ rad
- Main systematics: direct CP parameter fixed to 1, mass signal-background and decay time background PDF parameters fixed

$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ amplitude analysis

Phys. Rev. D86 (2012) 052006

• With 1 fb⁻¹, $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ candidates are reconstructed in the full $\pi \pi$ mass range.

 To analyse the resonant component, a modified Dalitz plot analysis of the final states has been used:

•
$$s_{13} = m^2 (J/\psi \pi^+)$$

• $s_{22} = m^2 (\pi^+ \pi^-)$

• Helicity angle
$$\theta_{J/\psi}$$

$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$, resonance models

- *s*s system is in an isoscalar state at leading order.
- $\pi\pi$ wavefunction must be symmetric. \rightarrow Only spin-0 and -2 mesons.
- ρ(770) component added to test high order processes.
- Several scenarios have been tried to get the best significant Poisson likelihood χ^2 (goodness-of-fit).

Resonance	Spin	Helicity	Resonance formalism
$f_0(600)$	0	0	BW
$\rho(770)$	1	$0, \pm 1$	BW
$f_0(980)$	0	0	Flatté
$f_2(1270)$	2	$0, \pm 1$	BW
$f_0(1370)$	0	0	BW
$f_0(1500)$	0	0	BW

Name	Components
Single R	$f_0(980)$
2R	$f_0(980) + f_0(1370)$
3R	$f_0(980) + f_0(1370) + f_2(1270)$
3R + NR	$f_0(980) + f_0(1370) + f_2(1270) + nonresonant$
$3R + NR + \rho(770)$	$f_0(980) + f_0(1370) + f_2(1270) + \text{nonresonant} + \rho(770)$
$3R + NR + f_0(1500)$	$f_0(980) + f_0(1370) + f_2(1270) + \text{nonresonant} + f_0(1500)$
$3R + NR + f_0(600)$	$f_0(980) + f_0(1370) + f_2(1270) + \text{nonresonant} + f_0(600)$

$B_s^0 ightarrow \overline{J/\psi} \pi^+ \pi^-$, results

- The background PDF is parametrised from a wrong-sign $J/\psi \pi^{\pm} \pi^{\pm}$ sample and random $J/\psi + \rho$ (770) from MC.
- The best significant χ^2 is obtained with the $f_0(980)+f_2(1270)+f_0(1370)$ and non-resonant model.
- Existence of $B_s^0 \rightarrow J/\psi f_0(1370)$ clearly established now.

15

(a)

Candidates / 0.6 GeV²

400F

200

$$A_{SL}^{d} = \frac{N(\overline{B}^{0}(t) \to \ell^{+}\nu_{\ell}X) - N(B^{0}(t) \to \ell^{-}\bar{\nu}_{\ell}X)}{N(\overline{B}^{0}(t) \to \ell^{+}\nu_{\ell}X) + N(B^{0}(t) \to \ell^{-}\bar{\nu}_{\ell}X)} = \frac{|p/q|_{d}^{2} - |q/p|_{d}^{2}}{|p/q|_{d}^{2} + |q/p|_{d}^{2}}$$

DØ measures [PRD84, 052007 (2011)] :

$$A_{SL}^{b} = \frac{f_{d}Z_{d}A_{SL}^{d} + f_{s}Z_{s}A_{SL}^{s}}{f_{d}Z_{d} + f_{s}Z_{s}} = -0.00787 \pm 0.00172(\text{stat}) \pm 0.00093(\text{syst})$$

where $Z_q = 1/(1-y_q^2) - 1/(1+x_q^2) = 2\chi_q/(1-y_q^2), \, q = d, s$

CPV in B_s^0 and B^0 mixing

Direct measurements of A_{SL}^s and A_{SL}^d (B^0 average as the vertical band, B_s^0 average as the horizontal band, D0 dimuon result as the green ellipse), together with their two-dimensional average (red hatched ellipse). The red point close to (0, 0) is the Standard Model prediction with error bars multiplied by 10. The prediction and the experimental average deviate from each other by 2.4 σ .

[HFAG 2012, preliminary]

CPV in the mixing

LHCb-PAPER-2013-033, arXiv:1308.1048, submitted to PLB

 $a_{s\prime}^{s} = (-0.06 \pm 0.50 \pm 0.36)\%$ [LHCb-PAPER-2013-033]

- Pure $b \rightarrow s\bar{s}s$ penguin mode
- SM expectation for CP violating weak phase $|\phi_s^{s\bar{s}s}| < 0.02^{\dagger}$
- Tagged time-dependent angular analysis, 1 fb $^{-1}$ 880 $B^0_s
 ightarrow \phi \phi$ candidates
- $\phi_s^{s\bar{s}s} \in [-2.46, -0.76]$ rad at 68% CL

† Bartsch et al., arXiv:8010.0249, Beneke et al., Nucl.Phys. B774 (2007)64, Cheng et al., PRD 80 (2009) 114026.

 B^{0}

 $B^0_s \to J\!/\!\psi\phi$: LHCb, PRD 87, 112010 (2013) $B^0 \to J\!/\!\psi K^{*0}$: LHCb, arXiv:1307.2782

	$ A_0 ^2$	$ A_{\perp} ^2$	$ A_{ } ^2$
$B_s^0 \rightarrow J/\psi \phi$	$0.521 \pm 0.006 \pm 0.010$	$0.249 \pm 0.009 \pm 0.006$	$0.230 \pm 0.007 \pm 0.012$
$B^0 ightarrow J\!/\!\psi K^{*0}$	$0.572 \pm 0.003 \pm 0.014$	$0.201 \pm 0.004 \pm 0.008$	$0.227 \pm 0.004 \pm 0.011$

 $|A_0|^2$: compatible at 2.8 σ $|A_\perp|^2$: 3.4 σ

 $|A_{\parallel}|^2$: compatible at 0.2 σ

LHCb, New J. Phys. 15 (2013) 053021

1 fb⁻¹
$$B_s^0 \rightarrow D_s^- \pi^+$$

 $\Delta m_{
m s} = 17.768 \pm 0.023$ (stat) ± 0.006 (syst) $m ps^{-1}$

Measurement of ϕ_s at LHCb

$\Delta\Gamma_s$, Γ_s , HFAG averages

[PRD 87, 112010 (2013)] (1 fb⁻¹, this talk):

$$\begin{split} \phi_s &= 0.01 \ \pm 0.07 \ (\text{stat}) \pm 0.01 \ (\text{syst}) \ \text{rad}, \\ \Gamma_s &= 0.661 \pm 0.004 \ (\text{stat}) \pm 0.006 \ (\text{syst}) \ \text{ps}^{-1}, \\ \Delta\Gamma_s &= 0.106 \pm 0.011 \ (\text{stat}) \pm 0.007 \ (\text{syst}) \ \text{ps}^{-1}. \end{split}$$

Experiment	Dataset [fb ⁻¹]	Ref.	$\phi_{S}[rad]$	$\Delta \Gamma_{s}[ps^{-1}]$
LHCb $(B_s^0 \rightarrow J/\psi \phi)$	0.4	LHCb2011	$0.15 \pm 0.18 \pm 0.06$	$0.123 \pm 0.029 \pm 0.011$
LHCb $(B_S^{0} \rightarrow J/\psi \pi^+\pi^-)$	1.0	LHCb-PAPER-2012-006	$-0.019^{+0.173+0.004}_{-0.174-0.003}$	-
LHCb (combined)	0.4+1.0	LHCb-PAPER-2012-006	$0.06 \pm 0.12 \pm 0.06$	-
ATLAS	4.9	ATLAS2012tagged	$0.12 \pm 0.25 \pm 0.11$	$0.053 \pm 0.021 \pm 0.010$
CMS	5.0	CMS2012	-	$0.048 \pm 0.024 \pm 0.003$
D0	8.0	D02011	$-0.55^{+0.38}_{-0.36}$	$0.163^{+0.065}_{-0.064}$
CDF	9.6	CDF2012	[-0.60, 0.12] at 68% CL	$0.068 \pm 0.026 \pm 0.009$

CMS does not use flavour tagging (yet)

	CDF	D0	LHCb	ATLAS	CMS*)
$\int {\cal L}~[{ m fb}^{-1}]$	9.6	8.0	1.0	4.9	5.0
$\#B_s \to J/\psi KK(f_0)$	11k	5.6k	27.6k (7.4k)	22.7k	14.5k
ϵD^2 OS [%]	1.39 ± 0.05	2.48 ± 0.22	2.29±0.22	1.45±0.05	-
ϵD^2 SS [%]	3.5±1.4	-	0.89±0.18	-	-
σ_t [fs]	100	100	48	100	-
Reference	PRL 109(2012)	PRD85(2012)	PRD87(2013)	ATLAS-CONF-	CMS-PAS
	171802	032006	112010	2013.029	BPH-11-006

 * CMS: $\Delta\Gamma$ only: 0.048 \pm 0.024 \pm 0.003 $\rm ps^{-1}$

[S. Hansmann-Menzemer at EPS'2013]

LHCb detector at the LHC

- LHC: p−p collider, √s = 7 TeV (2011), 8 TeV (2012)
- LHCb: single-arm forward spectrometer:
 - Tracking system IP resolution ~ 15μ m (at high $p_{\rm T}$) $\delta p/p \sim 0.45\%$
 - RICH system

Very good ${\cal K}-\pi$ identification for $p\sim 2-100~{
m GeV}/c$

Calorimeter

Energy measurement, identify π^0, γ, e

- + trigger
- Muon detector

muon identification + trigger

Integrated lumi 1 fb⁻¹ (2011), 2 fb⁻¹ (2012)

Trigger

- L0 hardware trigger:
 - Find lepton, hadron with high p_T
 - Reduce the rate from 40 MHz to 1 MHz
- HLT1 software trigger:
 - Finds vertexes in VELO
 - Tracks with high IP & $p_{\rm T}$
- HLT2 software trigger:
 - Reconstruct all tracks in event
 - Select inclusive/exclusive B meson
 - Output rate = 5 kHz

Expected performances of LHCb upgrade CERN-LHCC-2012-007

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50 {\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{\rm fs}(B_s^0)$	6.4×10^{-3} [18]	$0.6 imes10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	-	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	-	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	-	5 %	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{FB}(B^0 \rightarrow K^{*0}\mu^+\mu^-)$	25 % [14]	6%	2 %	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-)$	1.5×10^{-9} [2]	$0.5 imes 10^{-9}$	$0.15 imes 10^{-9}$	$0.3 imes 10^{-9}$
penguin	$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B^0_s \to \mu^+\mu^-)$	-	$\sim 100\%$	$\sim 35 \%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)}K^{(*)})$	$\sim 10{-}12^{\circ}$ [19, 20]	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	$0.40 imes 10^{-3}$	$0.07 imes10^{-3}$	-
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	$0.65 imes10^{-3}$	$0.12 imes 10^{-3}$	_

Table 1: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the current sensitivity is compared to that which will be achieved by LHCb before the upgrade, and that which will be achieved with $50 \, \text{fb}^{-1}$ by the upgraded experiment. Systematic uncertainties are expected to be non-negligible for the most precisely measured quantities.

Comparison with other, April 2013

Comparison with other, LHCb upgrade projections

