How Weak Lensing Can Help Us Understand Galaxy Physics

Eric Suchyta Eric Huff, Genevieve Graves, Matt George, Tim Eifler, Elisabeth Krause, David Schlegel, Klaus Honscheid

How Galaxy Physics Can Help Us Understand Weak Lensing

Eric Huff via Eric Suchyta Genevieve Graves, Matt George, Tim Eifler, Elisabeth Krause, David Schlegel

Lensing is the distortion of background images by foreground mass:

$$\kappa\left(\bar{\theta}\right) = \int_{0}^{z_{s}} \frac{c}{H_{0}} \frac{dz}{a} \frac{\rho_{m}\left(z\right)}{\Sigma_{\text{crit}}}$$

$$\Sigma_{\rm crit} = \frac{3H_0^2}{8\pi G} \frac{d_S}{d_L d_{LS}}$$

Sensitive to geometry and lens mass

what weak lensing measures:

Foreground mass shears and magnifies background galaxies.

Weak lensing is weak.

The signal-to-noise is very small.

$$<\gamma>\sim 0.001-0.01$$

Especially compared to the random noise from intrinsic galaxy shapes

 $\sigma_{\gamma} = 0.2$

Consider magnification.

Traditionally, magnification measurements are much noisier than shear

This is because the intrinsic scatter in magnified properties is much larger than that in shapes.

Very recently, there have been several successful measurements.

Morrison et al. 2012

Schmidt et al. 2012

but the signal-to-noise is still far below that of shear.

There is unexploited signal here

to use it, remember that the source galaxies are more than just a size and a shape...

The Fundamental Plane of Early Type Galaxies

~15% intrinsic scatter

no* significant variation with environment

The Fundamental Plane of Early Type Galaxies

~15% intrinsic scatter

no* significant variation with environment

But we cannot get spectra for enough galaxies to do weak lensing this way.

*maybe

There is a photometric FP analogue

$$\kappa = \log \left(R_{eff} \right) - f \left(\mu, \log conc \right)$$

There is a photometric FP analogue

$$\kappa = \log \left(R_{eff} \right) - f \left(\mu, \log conc \right)$$

This is what it looks like in SDSS.

There is a photometric FP analogue

$$\kappa = \log \left(R_{eff} \right) - f \left(\mu, \log conc \right)$$

This is the result of a small magnification.

Constructing a magnification source sample using SDSS

60,000 Lenses: log (stellar mass) > 11.0 0.2 < z < 0.4

10 million Sources: resolved galaxies early-type SEDs (35%)

Why this is not an easy measurement:

photo-z's and clustering produce spurious signal

Why this is not an easy measurement: all existing photometric pipelines are flawed

Lenses bias the measurement of faint source properties.

SDSS Magnification Results

Errors ~ 1.5-2x those of shear,

(but there is room for improvement)

What we gain from combining shear and magnification:

magnification

shear

A novel combination of kinematics and lensing using the Tully-Fisher relation

Weak lensing is weak.

The signal-to-noise is very small.

 $<\gamma>\sim 0.001-0.01$

Especially compared to the random noise from intrinsic galaxy shapes

 $\sigma_{\gamma} = 0.2$

A novel combination of kinematics and lensing using the Tully-Fisher relation

Figure 4.1: Raw 2D spectrum for IRAS 2214+4115

Schlegel (private comm.)

Reyes et al 2011

Reyes et al 2011

If we know TF, we can use rotation curves to estimate the ellipticities independently

2.5 2.0 sin(i) og₁₀ v₈₀ (km/s) 1.5 •• 1.0 æ 0.5 0.0 9.0 8.5 9.5 10.0 10.5 11.0 11.5 log₁₀ M_{Bell} - 10.102

Blue points:

not corrected

for inclination

<u>Red trendline:</u> TF relation, which we treat as given

For a disk, sin(i) tells us what ellipticity we should measure in the absence of lensing.

Cartoon: How TF improves lensing signal.

rotation curve <u>image</u> 100 Rotatĭon Velocíty 50 Û face-on -50 -100-150 -100 -50 0 50 distance 100 50

face-on, but sheared

inclined, but not sheared

This controls for much of the shape noise.

LSST weak lensing: 37 galaxies per sq. arcmin

equivalent S/N to 0.5 Tully-Fisher galaxies per sq. arcmin

a **major** reduction in certain systematic errors

 $\sigma_{\gamma} = 0.02$

This controls for much of the shape noise.

 $\sigma_{\gamma} = 0.02$

a **major** reduction in certain systematic errors:

no photo-z's

brighter, better resolved galaxies drastically reduce psf correction, shear calibration issues

And allows for dramatic improvements to the cosmological constraints

And allows for dramatic improvements to the cosmological constraints

