

Measurement of B Baryon Properties at CDF

Patrick T. Lukens Fermilab For the CDF Collaboration *August 2013*

- The study of *b*-baryons is hadron collider job.
 - Masses are above the B factory reach
- Prior to 2000 a small signal of $\Lambda_b \rightarrow J/\psi \Lambda$ was the only fully reconstructed observation.
- The 2001-11 Tevatron run <
 <p>provided observation of most ground states with one b.
- The LHC operation is now opening the field to a new level
 - > Excited states ($\Lambda_{b}^{*}(LHCb), \Xi_{b}^{*}(CMS)$)
 - Greater precision (LHCb)

J = 1/2 b Baryons

b-Baryons

- This report provides an update on the mass and mean life properties of several weakly-decaying b baryons.
- The measurements use the full Run II CDF data set
 9.6 fb⁻¹ the full 2001-11 operation
- B mesons are measured as well, to establish the systematic uncertainties.

J = 1/2 b Baryons

The CDF II Detector

- The data used in this analysis was collected with the CDF II Detector.
- Two triggers are used
 - > $\mu^+\mu^-$ trigger selects J/ ψ
 - Unbiased with respect to decay time for *b*-hadrons
 - Displaced track trigger selects B decays
 - Biased for long decay time

Collecting *b* Baryons with a J/ψ Final State

This trigger matches central tracker and muon chamber tracks.
 A successful match will trigger acceptance of the event.

Reconstruction in the J/ ψ Sample

- For all states, require
 - $P_T > 6 \text{ GeV/c}$
 - $> P_T$ (hadron) > 2 GeV/c
 - > $P_T(all tracks) > 0.4 GeV/c$
 - P(χ²) > 10⁻⁴ for charmonium mass, vertex fit
 - ct > 100 μm
- Silicon is required on the muon tracks
 - Provides vertex resolution
 - Not used on any other tracks

CDF Two-Track Trigger

 Data that match prescribed patterns in the silicon triggers acceptance of the event.

> 100 μ m < ldl < 1 mm

- Provides purely hadronic final states biased to heavy flavor
 - > Flight from the beam > 200 μ m

DPF 2013

Reconstruction in the Hadronic Trigger Sample

- For all states, require
 - 2 trigger tracks
 - $ightarrow P_T(\Xi_c/\Omega_c) > 4 \text{ GeV/c}$
 - > $P_T(all tracks) > 0.4 GeV/c$
 - P(χ²) > 10⁻⁴ for full mass,
 vertex fit
 - ct > 100 μm, Idl < 100 μm</p>
- Silicon is required on the trigger tracks.
- Decay products of the Λ/Ξ⁻/Ω⁻ are found in the drift chamber.

Hyperon Tracks

- The final state fit provides a decay point and momentum measurement of Ξ⁻/Ω⁻.
- This defines a helix, used as a search road for silicon hits.

 The resulting Ξ⁻/Ω⁻ track precision allows resolution of the charm vertex.

Mass, Mean Life Measurements

- Mass and mean life measurements use an unbinned likelihood fit to the mass distributions
 - Full sample provides a mass measurement
 - Sample binned in decay time for a mean life measurement.
 - Fit is insensitive to background "lifetime", resolution terms.
- Reference measurements are made for B⁺ and B⁰.

B Meson Properties

Process	Data	Mass(Me	eV/c²)	Mean Life(µm)	
		Measured	δm	Measured	δςτ
B+→J/ψK+	All	5278.57±0.05	0.7±0.2	487.2±1.9	-4.8±3.1
	Not Published	5278.57±0.08	0.7±0.2	489.3±2.7	-2.7±3.6
B ⁰ →J/ψK ^{0*}	All	5279.04±0.11	0.5±0.2	458.8±3.3	3.4±3.9
	Not Published	5278.96±0.15	0.6±0.2	459.0±4.6	3.6±5.1
B ⁰ →J/ψK ⁰ _s	All	5280.02±0.12	-0.4±0.2	454.9±4.1	0.5±4.6
	Not Published	5280.10±0.18	-0.5±0.2	456.8±5.7	(1.4±6.1)

- B mesons establish our lifetime accuracy
 - > Fully reconstructed B, two μ tracks for vertex
 - Differences are with respect to the PDG
 - Most conservative unpublished comparison
 - No worse than 6/455

$\Lambda_{\rm b}$ Sample

700

600

500

400

300

200

- Data

····· Fit

CDF Run II Preliminary, 9.6 fb⁻¹

 $N(\Lambda_b) = 2995 \pm 85$

 $\Lambda_{\rm b} \rightarrow J/\psi \Lambda$ selection differs from the K_s only in track mass assignments and twotrack mass range.

 $\Xi_{\rm b}^{-}$ Sample

DPF 2013

Lukens - 13

Ω_b^{-} Sample

8

7

6 5

2

Data

····· Fit

Candidates per 5 MeV/c²

- $\Omega_{b}^{-} \rightarrow J/\psi \Omega^{-}, \Omega^{-} \rightarrow \Lambda K^{-}$ selection is very similar to the Ξ_{b}^{-} .
 - \succ Reassign $\pi^- \rightarrow K^-$
 - > p_T(K⁻) > 1 GeV/c

Candidates per 5 MeV/c²

CDF Run II Preliminary, 9.6 fb⁻¹

 $N(\Omega_{b}) = 22 \pm 4$

- In the track trigger, we reconstruct
 - $\begin{array}{l} & \Xi_{b}^{-/0} \longrightarrow \Xi_{c}^{0/+} \pi^{-}, \\ & & \Xi_{c}^{0/+} \longrightarrow \Xi^{-} \pi^{+} (\pi^{+}), \\ & & & = \cdot \end{array}$
 - $\Sigma \Xi^{-} \rightarrow \Lambda \pi^{-},$
 - **⊾** Λ→pπ⁻.
- The track trigger is biased in lifetime.
- Therefore, only masses will be extracted

$\Omega^-\pi^+\pi^-$ distribution

CDF Run II Preliminary, 9.6 fb⁻¹

CDF Run II Preliminary, 9.6 fb⁻¹

- The full data set allows the baryon search to extend into the Ω⁻π⁺π⁻ system.
- In $\Omega^-\pi^+\pi^-$ distribution
 - $\succ \Omega_{\rm b}^{-}$ candidates in $\Omega_{\rm c}^{0}$ range
 - > Ω_{c}^{0} candidates in Ω_{b}^{-} range

 $\Omega_{\rm h}$ →Ω_⁰π⁻

- Significance is tested by a ∆log £ test
 - Assume a mass in the range 6046(LHCb) to 6054(CDF) MeV/c².
- Simulation of uniform distribution gives
 P=1-5×10⁻⁴ for comparable ∆log £

≻3.3-3.6σ

• Considered evidence for $\Omega_{\rm b}^{-} \rightarrow \Omega_{\rm c}^{-0} \pi^{-}$

Systematic Uncertainties on Mass

	Uncertainty(MeV/c ²)								
Effect	B+	+ B ⁰		Λ_{b}	Ξ _b ⁻		Ξ_{b}^{0}	Ω_{b}^{-}	
		J/ψK ^{0*}	$J/\psi K^0_s$		J/ψΞ ⁻	$\Xi_{c}^{0}\pi^{-}$		J/ψΩ ⁻	$\Omega_{c}^{0}\pi^{-}$
$\Xi_{\rm c}, \Omega$ mass	_	-	_	-	-	0.8	0.6	0.29	1.7
Momentum scale	0.45	0.42	0.45	0.4	0.4	0.5	0.4	0.4	0.55
Uncertainty model	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total	0.45	0.42	0.45	0.4	0.4	0.95	0.73	0.5	1.8

- Momentum scale from J/ ψ , ψ (2S), Υ
- Uncertainty model from variations in the fit
- Total is quadrature sum.

B measurements are consistent with PDG DPF 2013

Baryon Properties from µµ trigger

Process	Mass(MeV/c ²)	Mean Life(ps)
$\Lambda_{\rm b}$ →J/ψΛ	5620.14±0.31(stat) ±0.40(syst)	1.565±0.035(stat) ±0.020(syst)
Ξ _b ⁻ →J/ψΞ ⁻	5794.1±2.0(stat) ±0.40(syst)	1.36±0.15(stat) ±0.02(syst)
$Ω_b^- \rightarrow J/ψ Ω^-$	6051.4±4.2(stat) ±0.50(syst)	1.77 ^{+0.55} -0.41(stat) ±0.020(syst)

- Baryon properties were obtained for several variations of resolution and decay time binning.
- These supersede our previous results.

Baryon Properties from Hadronic Trigger

Process	Mass(MeV/c ²)		
$\Xi_{\rm b}^{-} \rightarrow \Xi_{\rm c}^{0} \pi^{-}$	5796.5±4.7(stat) ±0.95(syst)		
$\Xi_b^0 \rightarrow \Xi_c^+ \pi^-$	5791.6±5.0(stat) ±0.73(syst)		
$\Omega_{b}^{-} \rightarrow \Omega_{c}^{0} \pi^{-}$	6040±8(stat) ±2(syst)		

- Evidence for $\Omega_b^- \rightarrow \Omega_c^0 \pi^-$ is given at 3.3-3.6 σ level • Observation of the Ξ_b^0 provides mass difference
 - $M(\Xi_{b}^{-}) M(\Xi_{b}^{0}) = 2.5 \pm 5.4(\text{stat}) \pm 0.6(\text{syst}) \text{ MeV/c}^{2}$

Comparison to LHCb

Process		Mass(MeV/c ²)	Mean Life(ps)
$Λ_b \rightarrow J/ψΛ$	CDF	5620.14±0.31(stat) ±0.40(syst)	1.565±0.035(stat) ±0.020(syst)
	LHCb	5619.53±0.13(stat) ±0.45(syst)	1.482±0.018(stat) ±0.012(syst)
$\Xi_b^- \rightarrow J/\psi \Xi^-$	CDF	5794.1±2.0(stat) ±0.4(syst)	1.36±0.15(stat) ±0.02(syst)
	LHCb	5795.8±0.9(stat) ±0.4(syst)	_
$\Omega_{b}^{-} \rightarrow J/\psi \Omega^{-}$	CDF	6051.4±4.2(stat) ±0.5(syst)	1.77 ^{+0.55} -0.41(stat) ±0.020(syst)
	LHCb	6046.0±2.2(stat) ±0.5(syst)	_

• Only discrepancies of note are with the $\Lambda_{\rm b}$

- \geq 2 σ in mass
- > 2.5 σ in mean life

Conclusions

- The full CDF data set allows measurements of several b-baryon properties.
- Masses and mean life from the dimuon trigger
 - > Confirm our $\Omega_{\rm b}^-$ observation paper
- Masses from the hadronic trigger.
 - > Confirm our Ξ_{b}^{0} only observation to date
 - > New evidence for the second observed final state of the $\Omega_{\rm b}^{-}$
- Where possible, comparisons are consistent with latest LHCb results.