Search for anomalous production of events with same-sign dileptons and *b* jets in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Xiaowen Lei University of Arizona On behalf of the ATLAS Collaboration

DPF 2013 Meeting

August 15, 2013

1 Introduction

- Motivation
- Signal signature

2 Analysis

- Event selection
- Background estimation
- Systematics

3 Results

• b'

VLQ

- Same-sign top pair
- Four top quarks

4 Summary

Motivation

Production of events with two leptons of the same electric charge has a very low production cross-section in the Standard Model

⇒ Potentially large contributions from new theories!

We study four types of signals that lead to similar final states:

- 1 Fourth-generation chiral bottom-like quark pair production $(b'\bar{b}')$
- 2 Vector-like quark (VLQ) pair production $(B\bar{B}/T\bar{T})$
- 3 Same-sign top pair production (*tt*) from BSM
- 4 Four top quarks production (*tītī*) from BSM (and also SM):
 - Effective model with four-top contact interaction
 - New model with sgluon pair production
 - New model with two universal extra dimensions under real projective plane geometry (2UED/RPP)

Reduced 8 TeV dataset: 14.3 fb⁻¹ ATLAS-CONF-2013-051

Signal signature

All signals lead to final states with at least two same-sign leptons, sizable missing transverse momentum (E_T^{miss}), and two or more jets, including *b*-jets.

The exact final state varies from signal to signal

$b'\bar{b}' \rightarrow W^- t W^+ \bar{t} \rightarrow W^- W^+ b W^+ W^- \bar{b}$

VLQ pair production can lead to this final state too. But in addition, T/B can also decay to Z boson or Higgs boson, leading to different final states. $B \rightarrow tW/bZ/bH \quad T \rightarrow bW/tZ/tH$

Sgluon pair decays to four tops $(t\bar{t}t\bar{t} \rightarrow W^+bW^-\bar{b}W^+bW^-\bar{b})$ More *b* jets than $b'\bar{b}'$

1 Introduction

Motivation

Signal signature

2 Analysis

- Event selection
- Background estimation
- Systematics

3 Results

b'

VLQ

- Same-sign top pair
- Four top quarks

4 Summary

Event selection

Г

Basic selection criteria for signal region:

- 1 At least 1 primary vertex formed with at least 5 tracks
- 2 Pass either an electron trigger or a muon trigger
- 3 Exactly 2 isolated leptons ($p_T > 25$ GeV) with same electric charge ($e^{\pm}e^{\pm}/e^{\pm}\mu^{\pm}/\mu^{\pm}\mu^{\pm}$)
- **4** Z veto for *ee* and $\mu\mu$ channels: $|M_{ll} 91| > 10$ GeV and $M_{ll} > 15$ GeV.
- 5 At least 2 jets ($p_T > 25$ GeV), including at least 1 *b*-jet.

6
$$E_T^{\text{miss}} > 40 \text{ GeV}, H_T > 550 \text{ GeV}$$

$$H_T = \sum_{jets,e,\mu} p_T$$

Selection is optimized for each signal using a grid search on:

$$\blacksquare N_{jets}, N_{bjets}, E_T^{miss}, H_T$$

Discriminant variables: $e\mu$ channel

Summary of the selection for the various signals

All signals require:

 $N_{jets} \ge 2, E_T^{miss} > 40 \text{ GeV}$

Variable	b' and VLQ	tt	tītī
H_T	> 650 GeV	> 550 GeV	> 650 GeV
N_{b-jets}	≥ 1	≥ 1	≥ 2
Charge	±±	++	±±

Selection optimization for the four tops signal

Backgrounds

Sources of background:

- True same-sign dilepton pairs: physics processes which give same-sign dilepton events
- False same-sign dilepton pairs: physics processes which don't give same-sign dilepton events, but are reconstructed/identified as such

True same-sign dilepton pairs \Rightarrow estimated from Monte Carlo samples:

WZ + jets	tīZ+jets
ZZ + jets	$t\bar{t}W$ +jets
W [±] W [±] ii	$t\bar{t}W^+W^-$

False same-sign dilepton pairs \Rightarrow estimated from data-driven techniques:

- Fakes: mis-reconstructed leptons (*b*/*c* hadrons, π^0 , photons)
- Charge mis-id: electron charge mis-identification (negligible for muons)
 - Trident electrons produced from hard bremsstrahlung
 - Measurement error induced by slightly curved track

SM processes such as $t\bar{t}$, single top, W+jets will contribute to this background and therefore are not included as Monte Carlo samples

Data-driven background estimation

The fakes background is estimated using a matrix method

Real/fake efficiencies measured in single lepton control regions and parametrised with several variables, such as lepton *p_T*, *η*, and trigger matching results

The charge mis-id background is estimated using a likelihood method

- Charge mis-identification rate measured in a $Z \rightarrow ee$ sample, and corrected using a p_T dependent correction factor computed from MC $t\bar{t}$ events
- Overlap with the fakes removed by applying a correction factor to the rate

Expected and observed yields in control region

No cut on E_T^{miss} , $100 < H_T < 400 \text{ GeV}$

	Channel		
Samples	ee	еµ	μμ
Charge mis-id	$25.7 \pm 0.7 \pm 6.6$	$30.2 \pm 0.6 \pm 7.9$	_
Fakes	$38.7 \pm 3.7 \pm 11.6$	73.1 ± 5.3 ± 21.9	$33.4 \pm 8.5 \pm 10.0$
Diboson			
 WZ/ZZ+jets 	$3.9 \pm 0.7 \pm 1.3$	$10.9 \pm 1.2 \pm 3.7$	$5.1 \pm 0.8 \pm 1.7$
 W[±]W[±]+2 jets 	$0.4 \pm 0.2 \pm 0.2$	$1.2 \pm 0.3 \pm 0.6$	$0.8 \pm 0.2 \pm 0.4$
$t\bar{t} + W/Z$			
 <i>t</i>tW(+jet) 	$1.7 \pm 0.1 \pm 0.5$	$6.6 \pm 0.2 \pm 2.0$	$4.3 \pm 0.2 \pm 1.3$
 tīZ(+jet) 	$0.5 \pm 0.1 \pm 0.1$	$1.5 \pm 0.1 \pm 0.5$	$0.8 \pm 0.1 \pm 0.2$
 tt <i>W</i>⁺ W[−] 	0.014 ± 0.002	0.050 ± 0.004	0.029 ± 0.003
Total expected background	$71 \pm 5 \pm 13$	$124 \pm 8 \pm 24$	$44 \pm 11 \pm 10$
Observed	64	97	38
Signal contamination			
 b' → Wt (800 GeV) 	< 0.003	0.009 ± 0.006	0.002 ± 0.001
• 4 tops contact $(C/\Lambda^2 = -4\pi \text{ TeV}^{-2})$	0.009 ± 0.005	0.06 ± 0.02	0.02 ± 0.01

Observed and expected number of events with statistical (first) and systematic (second) uncertainties for the E_T^{miss} control region selection. For the Monte Carlo simulation, the systematic uncertainties include only the production cross section uncertainty

Systematic uncertainties

For MC backgrounds, the largest source of uncertainty is on the calculated cross section. Other leading sources of uncertainty include jet energy scale, b jet identification efficiency, and lepton identification efficiency

	Uncertainty in %					
	65	50 GeV	b'	Background		nd
Source	ee	еμ	$\mu\mu$	ee	еμ	$\mu\mu$
Cross section	-	-	-	14.4	25.4	32.9
Fakes	-	_	-	9.7	1.4	10.1
Charge mis-ID	-	_	-	7.2	7.1	-
Jet energy scale	4.6	2.5	0.2	3.5	10.2	4.4
ISR/FSR	6.0	6.0	6.0	2.6	4.5	4.0
b jet ID	4.6	3.1	3.0	2.1	4.4	4.0
Lepton ID eff.	5.3	4.9	8.2	2.2	3.6	5.4
Jet energy resolution	0.8	0.9	0.3	0.9	2.7	2.0
Luminosity	3.6	3.6	3.6	1.6	2.7	2.4
Lepton energy scale	0.8	0.4	0.0	1.4	0.9	0.1
JVF selection efficiency	2.5	2.9	2.6	1.1	1.5	1.4

Leading sources of systematic uncertainty on the signal and background estimates for the b'/VLQ selection, and their relative impact on the total background estimate. A b' mass of 650 GeV is assumed

1 Introduction

Motivation

Signal signature

2 Analysis

Event selection

- Background estimation
- Systematics

3 Results

- b′
- VLQ
- Same-sign top pair
- Four top quarks

4 Summary

Data/background yields for the b'/VLQ selection

Backgrounds	Channel			
Samples	ee	еμ	μμ	
Charge mis-id	$0.6 \pm 0.1 \pm 0.2$	$0.9 \pm 0.1 \pm 0.3$	—	
Fakes	$0.8 \pm 0.4 \pm 0.3$	$0.2 \pm 0.4 \pm 0.1$	< 1.1	
Diboson				
 WZ/ZZ+jets 	$0.3 \pm 0.2 \pm 0.1$	$0.3 \pm 0.1^{+0.4}_{-0.2}$	$0.4 \pm 0.2 \pm 0.1$	
 W[±]W[±]+2 jets 	$0.17 \pm 0.09 \pm 0.05$	$0.3 \pm 0.2 \pm 0.1$	$0.2 \pm 0.1 \pm 0.1$	
$t\bar{t} + W/Z$				
 tt̄W(+jet(s)) 	$0.6 \pm 0.2 \pm 0.3$	$1.9 \pm 0.2 \pm 0.6$	$1.3 \pm 0.2 \pm 0.4$	
 ttZ(+jet(s)) 	$0.18 \pm 0.03 \pm 0.06$	$0.66 \pm 0.05 \pm 0.22$	$0.31 \pm 0.04 \pm 0.10$	
• $t\bar{t}W^+W^-$	$0.024 \pm 0.003^{+0.010}_{-0.007}$	$0.072 \pm 0.005^{+0.028}_{-0.020}$	$0.055 \pm 0.004^{+0.022}_{-0.016}$	
Total expected background	$2.7 \pm 0.5 \pm 0.4$	$4.4 \pm 0.5^{+0.9}_{-0.7}$	$2.3 \pm 1.2 \pm 0.5$	
Observed	3	10	2	

Observed and expected number of events with statistical (first) and systematic (second) uncertainties for the b'/VLQ signal selection

Kinematic distributions after the b'/VLQ selection

The shaded areas correspond to the total uncertainties on the background. For the Monte Carlo simulated samples, systematic uncertainties include only the production cross section uncertainty

Limits on b'

Left: Limits assuming 100% branching fraction of $b' \rightarrow Wt$ Right: Limits set as a function of $b' \rightarrow Wt$ branching fraction

Limits on VLQ

Limits for B/T singlets in a natural scenario (arXiv:0907.3155)

Observed limit: $m_T > 0.54$ TeV Expected limit: $m_T > 0.59$ TeV

Limits on VLQ

Limits derived for different branching ratios in a 2D plane: B

Xiaowen Lei

Limits on VLQ

Limits derived for different branching ratios in a 2D plane: T

Data/background yields for the tt selection

	Channel			
Samples	ee	еμ	μμ	
Charge mis-id	$0.6 \pm 0.1 \pm 0.2$	$0.5 \pm 0.1 \pm 0.2$	—	
Fakes	$0.6 \pm 0.4 \pm 0.2$	$1.0 \pm 0.4 \pm 0.3$	$0.7 \pm 0.7 \pm 0.2$	
Diboson				
 WZ/ZZ+jets 	$0.2 \pm 0.1 \pm 0.1$	$0.5 \pm 0.3 \pm 0.2$	$0.6 \pm 0.3 \pm 0.2$	
 W[±]W[±]+2 jets 	$0.16 \pm 0.08 \pm 0.04$	$0.3 \pm 0.2 \pm 0.1$	$0.2 \pm 0.1 \pm 0.1$	
$t\bar{t} + W/Z$				
 <i>ttW</i>(+jet(s)) 	$0.7 \pm 0.1 \pm 0.2$	$2.2 \pm 0.1 \pm 0.7$	$1.5 \pm 0.1 \pm 0.5$	
 <i>ttZ</i>(+jet(s)) 	$0.18 \pm 0.03 \pm 0.06$	$0.59 \pm 0.05 \pm 0.19$	$0.26 \pm 0.03 \pm 0.09$	
• $t\bar{t}W^+W^-$	$0.013 \pm 0.002 \pm 0.005$	$0.053 \pm 0.004 \pm 0.021$	$0.032 \pm 0.003 \pm 0.013$	
Total	$2.5 \pm 0.4 \pm 0.4$	$5.1 \pm 0.5 \pm 0.9$	$3.3 \pm 0.8 \pm 0.7$	
Observed	3	8	1	

Observed and expected number of events with statistical (first) and systematic (second) uncertainties for the positively-charged top pair signal selection

Limits on *tt*

Limits for an effective four-fermion contact interaction, for three different chirality configurations. The coupling strength is respectively C_{LL}/Λ^2 , C_{LR}/Λ^2 , and C_{RR}/Λ^2

	95% C.L. upper limit			
	$\sigma(pp \to tt)$ [pb] $ C /\Lambda^2$ [TeV ⁻²]			
Chirality configuration	Expected 1σ range	Observed	Observed	
Left-left	0.14-0.28	0.19	0.092	
Right-right	0.15-0.32	0.21	0.099	

Expected and observed limits on the positively-charged top quark pair signal

Limits on *tt*

Limits for an effective four-fermion contact interaction, for three different chirality configurations. The coupling strength is respectively C_{LL}/Λ^2 , C_{RR}/Λ^2 , and C_{LR}/Λ^2

	95% C.L. upper limit			
	$\sigma(pp \to tt)$ [pb] $ C /\Lambda^2$ [TeV ⁻²			
Chirality configuration	Expected 1σ range	Observed	Observed	
Left-right	0.15-0.30	0.20	0.271	

Expected and observed limits on the positively-charged top quark pair signal

Data/background yields for the four tops selection

	Channel			
Samples	ee	еμ	μμ	
Charge mis-id	$0.16 \pm 0.04 \pm 0.05$	$0.41 \pm 0.07 \pm 0.12$	—	
Fakes	$0.18 \pm 0.17 \pm 0.05$	$0.07 \pm 0.28 \pm 0.02$	< 1.14	
Diboson				
 WZ/ZZ+jets 	< 0.1	$0.01 \pm 0.09 \pm 0.01$	< 0.11	
 W[±]W[±]+2 jets 	< 0.03	$0.18 \pm 0.16 \pm 0.07$	< 0.03	
$t\bar{t} + W/Z$				
 <i>t̄t</i>W(+jet(s)) 	$0.31 \pm 0.04 \pm 0.12$	$0.93 \pm 0.06 \pm 0.35$	$0.65 \pm 0.06 \pm 0.25$	
 <i>ttZ</i>(+jet(s)) 	$0.09 \pm 0.02 \pm 0.04$	$0.34 \pm 0.04 \pm 0.14$	$0.14 \pm 0.02 \pm 0.06$	
• $t\bar{t}W^+W^-$	$0.012 \pm 0.002 \pm 0.005$	$0.039 \pm 0.003 \pm 0.016$	$0.024 \pm 0.003 \pm 0.01$	
Total	$0.8 \pm 0.2 \pm 0.1$	$2.0 \pm 0.4 \pm 0.4$	$0.8 \pm 1.2 \pm 0.3$	
Observed	1	6	1	

Observed and expected number of events with statistical (first) and systematic (second) uncertainties for the four top quarks signal selection

Limits on *tītī*

Limits for SM and a general four-fermion contact interaction with coupling strength C/Λ^2

	95% C.L. upper limit			
	$\sigma(pp \to t\bar{t}t\bar{t})$ [fb] $ C /\Lambda^2$ [TeV ⁻²]			
Model	Expected 1σ range	Observed	Observed	
Standard Model	43-89	85	_	
Contact interaction	29-61	59	15	

Expected and observed limits on two four top quarks signals

Limits on *tītī*

Limits for the two specific models: sgluon pair production, and 2UED/RPP

1 Introduction

Motivation

Signal signature

2 Analysis

- Event selection
- Background estimation
- Systematics

3 Results

• b'

VLQ

- Same-sign top pair
- Four top quarks

4 Summary

Conclusions

- Presented a search for new physics using events with same-sign dileptons and *b*-jets
 - Has the advantage of very low standard model background
- No significant excess of events over background is observed. Therefore 95% C.L. limits have been set for several signals
- We are working towards the publication
 - Will use the full 8 TeV dataset (20.3 fb^{-1})
- Several studies to improve the analysis are under way
 - Adding events with more than two leptons
 - Setting limits with a distribution, instead of cut-and-count
 - Exploring multivariate analysis
 - Better treatment of the systematic uncertainties on the fakes background