Conformal Field Theories in 3.99 Dimensions

in collaboration with
S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin

Alessandro Vichi

August 15, 2013

Outline

(9) CFT's and epsilon expansion
(2) CFT Handbook
(3) Simple results

4 Fractional dimensions

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^{4}$ interaction in $4-\epsilon$ dimensions

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^{4}$ interaction in $4-\epsilon$ dimensions
When $\lambda \sim \epsilon$ the operator ϕ^{4} becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^{4}$ interaction in $4-\epsilon$ dimensions
When $\lambda \sim \epsilon$ the operator ϕ^{4} becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^{4}$ interaction in $4-\epsilon$ dimensions
When $\lambda \sim \epsilon$ the operator ϕ^{4} becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!
- in higher D: buy 1 get D free!

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^{4}$ interaction in $4-\epsilon$ dimensions
When $\lambda \sim \epsilon$ the operator ϕ^{4} becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!
- in higher D: buy 1 get D free!

Natural question: Is the Wilson-Fisher fixed point a CFT? If yes it doesn't live in 4D:

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^{4}$ interaction in $4-\epsilon$ dimensions
When $\lambda \sim \epsilon$ the operator ϕ^{4} becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!
- in higher D: buy 1 get D free!

Natural question: Is the Wilson-Fisher fixed point a CFT? If yes it doesn't live in 4D:
Crossing+Unitarity+Conformal Invariance in 4D $\Rightarrow \gamma_{\phi^{2}} \lesssim 2+3.006 \gamma_{\phi}$
[Poland, Simmons-Duffin, AV]

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^{4}$ interaction in $4-\epsilon$ dimensions
When $\lambda \sim \epsilon$ the operator ϕ^{4} becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!
- in higher D: buy 1 get D free!

Natural question: Is the Wilson-Fisher fixed point a CFT? If yes it doesn't live in 4D:
Crossing+Unitarity+Conformal Invariance in 4D $\Rightarrow \gamma_{\phi^{2}} \lesssim 2+3.006 \gamma_{\phi}$
[Poland, Simmons-Duffin, AV]
However at Wilson-Fisher fixed point: $\gamma_{\phi^{2}} \simeq \sqrt{12 \gamma_{\phi}}$

Conformal Algebra

In D dimensions :

$$
M_{\mu \nu}, P_{\rho}, D, K_{\sigma} \simeq S O(D \mid 2)
$$

Conformal Algebra

In D dimensions :

$$
M_{\mu \nu}, P_{\rho}, D, K_{\sigma} \simeq S O(D \mid 2)
$$

$$
\begin{aligned}
& {\left[\mathcal{D}, P_{\mu}\right]=i P_{\mu}} \\
& {\left[\mathcal{D}, K_{\mu}\right]=-i K_{\mu}} \\
& {\left[K_{\mu}, P_{\nu}\right]=2 i\left(\eta_{\mu \nu} \mathcal{D}-M_{\mu \nu}\right)} \\
& {\left[M_{\mu \nu}, K_{\rho}\right]=-i\left(\eta_{\mu \rho} K_{\nu}-\eta_{\nu \rho} K_{\mu}\right)} \\
& {\left[\mathcal{D}, M_{\mu \nu}\right]=\left[P_{\mu}, P_{\nu}\right]=\left[K_{\mu}, K_{\nu}\right]=[\mathcal{D}, \mathcal{D}]=0}
\end{aligned}
$$

Conformal Algebra

In D dimensions :

$$
\begin{aligned}
& \quad M_{\mu \nu}, P_{\rho}, D, K_{\sigma} \simeq S O(D \mid 2) \\
& {\left[\mathcal{D}, P_{\mu}\right]=i P_{\mu}} \\
& {\left[\mathcal{D}, K_{\mu}\right]=-i K_{\mu}} \\
& {\left[K_{\mu}, P_{\nu}\right]=2 i\left(\eta_{\mu \nu} \mathcal{D}-M_{\mu \nu}\right)} \\
& {\left[M_{\mu \nu}, K_{\rho}\right]=-i\left(\eta_{\mu \rho} K_{\nu}-\eta_{\nu \rho} K_{\mu}\right)} \\
& {\left[\mathcal{D}, M_{\mu \nu}\right]=\left[P_{\mu}, P_{\nu}\right]=\left[K_{\mu}, K_{\nu}\right]=[\mathcal{D}, \mathcal{D}]=0}
\end{aligned}
$$

Irreducible representations of Conformal Algebra:

- infinite towers of states (or operators) with increasing, equally spaced, dimensions.

Conformal Algebra

In D dimensions :

$$
M_{\mu \nu}, P_{\rho}, D, K_{\sigma} \simeq S O(D \mid 2)
$$

$$
\begin{aligned}
& {\left[\mathcal{D}, P_{\mu}\right]=i P_{\mu}} \\
& {\left[\mathcal{D}, K_{\mu}\right]=-i K_{\mu}} \\
& {\left[K_{\mu}, P_{\nu}\right]=2 i\left(\eta_{\mu \nu} \mathcal{D}-M_{\mu \nu}\right)} \\
& {\left[M_{\mu \nu}, K_{\rho}\right]=-i\left(\eta_{\mu \rho} K_{\nu}-\eta_{\nu \rho} K_{\mu}\right)} \\
& {\left[\mathcal{D}, M_{\mu \nu}\right]=\left[P_{\mu}, P_{\nu}\right]=\left[K_{\mu}, K_{\nu}\right]=[\mathcal{D}, \mathcal{D}]=0}
\end{aligned}
$$

Irreducible representations of Conformal Algebra:

- infinite towers of states (or operators) with increasing, equally spaced, dimensions.
- Lower state is called Primary: $K_{\mu} \mid s>=0$.

Conformal Algebra

In D dimensions :

$$
M_{\mu \nu}, P_{\rho}, D, K_{\sigma} \simeq S O(D \mid 2)
$$

$$
\begin{aligned}
& {\left[\mathcal{D}, P_{\mu}\right]=i P_{\mu}} \\
& {\left[\mathcal{D}, K_{\mu}\right]=-i K_{\mu}} \\
& {\left[K_{\mu}, P_{\nu}\right]=2 i\left(\eta_{\mu \nu} \mathcal{D}-M_{\mu \nu}\right)} \\
& {\left[M_{\mu \nu}, K_{\rho}\right]=-i\left(\eta_{\mu \rho} K_{\nu}-\eta_{\nu \rho} K_{\mu}\right)} \\
& {\left[\mathcal{D}, M_{\mu \nu}\right]=\left[P_{\mu}, P_{\nu}\right]=\left[K_{\mu}, K_{\nu}\right]=[\mathcal{D}, \mathcal{D}]=0}
\end{aligned}
$$

Irreducible representations of Conformal Algebra:

- infinite towers of states (or operators) with increasing, equally spaced, dimensions.
- Lower state is called Primary: $K_{\mu} \mid s>=0$.
- Other states, called Descendants, obtained applying P_{μ}

Conformal Algebra

In D dimensions :

$$
M_{\mu \nu}, P_{\rho}, D, K_{\sigma} \simeq S O(D \mid 2)
$$

$$
\begin{aligned}
& {\left[\mathcal{D}, P_{\mu}\right]=i P_{\mu}} \\
& {\left[\mathcal{D}, K_{\mu}\right]=-i K_{\mu}} \\
& {\left[K_{\mu}, P_{\nu}\right]=2 i\left(\eta_{\mu \nu} \mathcal{D}-M_{\mu \nu}\right)} \\
& {\left[M_{\mu \nu}, K_{\rho}\right]=-i\left(\eta_{\mu \rho} K_{\nu}-\eta_{\nu \rho} K_{\mu}\right)} \\
& {\left[\mathcal{D}, M_{\mu \nu}\right]=\left[P_{\mu}, P_{\nu}\right]=\left[K_{\mu}, K_{\nu}\right]=[\mathcal{D}, \mathcal{D}]=0}
\end{aligned}
$$

Irreducible representations of Conformal Algebra:

- infinite towers of states (or operators) with increasing, equally spaced, dimensions.
- Lower state is called Primary: $K_{\mu} \mid s>=0$.
- Other states, called Descendants, obtained applying P_{μ}
- representation totally characterized by scaling dimension and spin of the primary

The Operator Product Expansion

Completeness of the Hilbert space of states \Leftrightarrow OPE:

$$
\mathcal{O}_{\Delta_{1}}(x) \times \mathcal{O}_{\Delta_{2}}(y)=\frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} C_{12 \mathcal{O}} C_{\mu_{1} \ldots \mu_{l}}\left(y, \partial^{\nu}\right) \mathcal{O}_{\Delta}^{\mu_{1} \ldots \mu_{l}}(y)
$$

The Operator Product Expansion

Completeness of the Hilbert space of states \Leftrightarrow OPE:

$$
\begin{aligned}
\mathcal{O}_{\Delta_{1}}(x) \times \mathcal{O}_{\Delta_{2}}(y) & =\frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} C_{12 \mathcal{O}} C_{\mu_{1} \ldots \mu_{l}}\left(y, \partial^{\nu}\right) \mathcal{O}_{\Delta}^{\mu_{1} \ldots \mu_{l}}(y) \\
& =\frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} C_{12 \mathcal{O}} \underbrace{\left(C_{\mu_{1} \ldots \mu_{l}}(y) O_{\Delta}^{\mu_{1} \ldots \mu_{l}}(y)+\text { descendants }\right)}_{\text {fixed by conformal symmetry }}
\end{aligned}
$$

The Operator Product Expansion

Completeness of the Hilbert space of states \Leftrightarrow OPE:

$$
\begin{aligned}
\mathcal{O}_{\Delta_{1}}(x) \times \mathcal{O}_{\Delta_{2}}(y) & =\frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} C_{12 \mathcal{O}} C_{\mu_{1} \ldots \mu_{l}}\left(y, \partial^{\nu}\right) \mathcal{O}_{\Delta}^{\mu_{1} \ldots \mu_{l}}(y) \\
& =\frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} C_{12 \mathcal{O}} \underbrace{\left(C_{\mu_{1} \ldots \mu_{l}}(y) O_{\Delta}^{\mu_{1} \ldots \mu_{1}}(y)+\text { descendants }\right)}_{\text {fixed by conformal symmetry }}
\end{aligned}
$$

C_{120} are called OPE coefficients and define completely the theory.

The power of conformal invariance

Two point function of primaries: completely fixed

$$
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right)\right\rangle=\frac{\delta_{i j}}{x_{12}^{2 \Delta}} \quad x_{12} \equiv\left|x_{1}-x_{2}\right|
$$

The power of conformal invariance

Two point function of primaries: completely fixed

$$
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right)\right\rangle=\frac{\delta_{i j}}{x_{12}^{2 \Delta}} \quad x_{12} \equiv\left|x_{1}-x_{2}\right|
$$

Three point function of primaries: fixed modulo a constant

$$
\begin{array}{r}
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}^{\mu_{1} \ldots \mu_{I}}\left(x_{3}\right)\right\rangle=C_{12 \mathcal{O}} \frac{Z^{\mu_{1}} \cdots Z^{\mu_{I}}-\text { traces }}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}} x_{23}^{-\Delta_{1}+\Delta_{2}+\Delta_{3}} x_{13}^{\Delta_{1}-\Delta_{2}+\Delta_{3}}} \\
Z^{\mu}=\frac{x_{13}^{\mu}}{x_{13}^{2}}-\frac{x_{23}^{\mu}}{x_{23}^{2}}
\end{array}
$$

The power of conformal invariance

Two point function of primaries: completely fixed

$$
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right)\right\rangle=\frac{\delta_{i j}}{x_{12}^{2 \Delta}} \quad x_{12} \equiv\left|x_{1}-x_{2}\right|
$$

Three point function of primaries: fixed modulo a constant

$$
\begin{array}{r}
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}^{\mu_{1} \ldots \mu_{I}}\left(x_{3}\right)\right\rangle=C_{12 O} \frac{Z^{\mu_{1}} \cdots Z^{\mu_{I}}-\text { traces }}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}} x_{23}^{-\Delta_{1}+\Delta_{2}+\Delta_{3}} x_{13}^{\Delta_{1}-\Delta_{2}+\Delta_{3}}} \\
Z^{\mu}=\frac{x_{13}^{\mu}}{x_{13}^{2}}-\frac{x_{23}^{\mu}}{x_{23}^{2}}
\end{array}
$$

Use OPE to reduce higher point functions to smaller ones

Four point functions

Recalling the OPE

$$
\mathcal{O}\left(x_{1}\right) \times \mathcal{O}\left(x_{2}\right)=\sum_{\mathcal{O}^{\prime}} \frac{C_{\mathcal{O}^{\prime}}}{x_{12}^{2 d-\Delta}}\left(\mathcal{O}_{\Delta, I}^{\prime}+\text { descendants }\right)
$$

Four point functions

Recalling the OPE

$$
\mathcal{O}\left(x_{1}\right) \times \mathcal{O}\left(x_{2}\right)=\sum_{\mathcal{O}^{\prime}} \frac{C_{\mathcal{O}^{\prime}}}{x_{12}^{2 d-\Delta}}\left(\mathcal{O}_{\Delta, I}^{\prime}+\text { descendants }\right)
$$

Then

$$
\begin{aligned}
& \underset{\underbrace{\mathcal{O}}\left(x_{1}\right) \mathcal{O}}{ }\left(x_{2}\right) \underset{\underbrace{\mathcal{O}}\left(x_{3}\right) \mathcal{O}}{\mathcal{O}}\left(x_{4}\right)\rangle=\frac{u^{-d}}{\left(x_{13}^{2 d} x_{24}^{2 d}\right)} \sum_{O_{\Delta, l}^{\prime}} C_{\mathcal{O}^{\prime}}^{2} \underbrace{\left(\left\langle O_{\Delta, I}^{\prime} O_{\Delta, I}^{\prime}\right\rangle+\text { descendants }\right)}_{\text {function of } u, v \text { only by conformal symmetry }} \\
& u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
\end{aligned}
$$

Four point functions

Recalling the OPE

$$
\mathcal{O}\left(x_{1}\right) \times \mathcal{O}\left(x_{2}\right)=\sum_{\mathcal{O}^{\prime}} \frac{C_{\mathcal{O}^{\prime}}}{x_{12}^{2 d-\Delta}}\left(\mathcal{O}_{\Delta, I}^{\prime}+\text { descendants }\right)
$$

Then

$$
\begin{aligned}
& \underset{\mathcal{O}^{\mathcal{O}}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right)}{\left.\mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle=\frac{u^{-d}}{\left(x_{13}^{2 d} x_{24}^{2 d}\right)} \sum_{O_{\Delta, l}^{\prime}} C_{\mathcal{O}^{\prime}}^{2} \underbrace{\left(\left\langle O_{\Delta, I}^{\prime} O_{\Delta, I}^{\prime}\right\rangle+\text { descendants }\right)}_{\text {function of } u, v \text { only by conformal symmetry }}} \begin{array}{l}
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
\end{array} \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
\end{aligned}
$$

Conformal Blocks

$$
g_{\Delta, I}(u, v) \equiv\left\langle O_{\Delta, I}^{\prime} O_{\Delta, I}^{\prime}\right\rangle+\text { descendants }
$$

They sum up the contribution of an entire representation

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

- ('01: Dolan, Osborn): summed up all the contribution in a closed for for $\mathrm{D}=2,4$

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

- ('01: Dolan, Osborn): summed up all the contribution in a closed for for $\mathrm{D}=2,4$
- ('03: Dolan, Osborn): solved a 2nd order differential equation the conformal blocks satisfy:

$$
\left(\left(M_{\mu \nu}\right)^{2}-P_{\mu} K^{\mu}+2 D^{2}\right) g_{\Delta, I}(u, v)=\lambda_{\Delta, I} g_{\Delta, I}(u, v)
$$

solution only in even dimensions

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

- ('01: Dolan, Osborn): summed up all the contribution in a closed for for $\mathrm{D}=2,4$
- ('03: Dolan, Osborn): solved a 2nd order differential equation the conformal blocks satisfy:

$$
\left(\left(M_{\mu \nu}\right)^{2}-P_{\mu} K^{\mu}+2 D^{2}\right) g_{\Delta, I}(u, v)=\lambda_{\Delta, I} g_{\Delta, I}(u, v)
$$

solution only in even dimensions

- ('13: El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, AV): efficient method to compute Taylor coefficients of conformal block in any dimension.
(See David Simmons-Duffin's talk).

The Bootstrap program

Which expansion is the right one?

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle \text { vs }\langle\underbrace{\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}}\left(x_{4}\right)
$$

The Bootstrap program

Which expansion is the right one?

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle \text { vs }\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right.
$$

They must produce the same result:

The Bootstrap program

Which expansion is the right one?

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle \text { vs }\langle\underbrace{\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}}\left(x_{4}\right)
$$

They must produce the same result:
Constraint

$$
u^{-d}\left(1+\sum_{\Delta, I} C_{\Delta, I}^{2} g_{\Delta, I}(u, v)\right)=v^{-d}\left(1+\sum_{\Delta, I} C_{\Delta, I}^{2} g_{\Delta, I}(v, u)\right) \quad d=[\mathcal{O}]
$$

The Bootstrap program

Which expansion is the right one?

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle \text { vs } \quad \underset{\sim}{\mathcal{O}}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)
$$

They must produce the same result:
Constraint

$$
u^{-d}\left(1+\sum_{\Delta, I} C_{\Delta, I}^{2} g_{\Delta, I}(u, v)\right)=v^{-d}\left(1+\sum_{\Delta, I} C_{\Delta, I}^{2} g_{\Delta, I}(v, u)\right) \quad d=[\mathcal{O}]
$$

Crossing symmetry \Rightarrow Sum Rule

$$
\sum_{\Delta, I} C_{\Delta, I}^{2} \underbrace{\frac{v^{d} g_{\Delta, I}(u, v)-u^{d} g_{\Delta, I}(v, u)}{u^{d}-v^{d}}}_{F_{d, \Delta, I}}=1
$$

- $F_{d, \Delta, I}$ known functions
- $C_{\Delta, l}^{2}$ unknown coefficients
[Rattazzi,Rychkov,Tonni, AV]

Geometric interpretation

$$
\sum_{\Delta, I} C_{\Delta, I}^{2} \underbrace{\frac{v^{d} g_{\Delta, I}(u, v)-u^{d} g_{\Delta, I}(v, u)}{u^{d}-v^{d}}}_{F_{d, \Delta, I}}=1
$$

Geometric interpretation

$$
\sum_{\Delta, I} C_{\Delta, I}^{2} \underbrace{\frac{v^{d} g_{\Delta, I}(u, v)-u^{d} g_{\Delta, I}(v, u)}{u^{d}-v^{d}}}_{F_{d, \Delta, I}}=1
$$

- All possible sums of vectors with
 positive coefficients define a cone

Geometric interpretation

$$
\sum_{\Delta, I} C_{\Delta, I}^{2} \underbrace{\frac{v^{d} g_{\Delta, I}(u, v)-u^{d} g_{\Delta, I}(v, u)}{u^{d}-v^{d}}}_{F_{d, \Delta, I}}=1
$$

- All possible sums of vectors with positive coefficients define a cone
- Crossing symmetry satisfied $\Leftrightarrow 1$ is inside the cone

Geometric interpretation

$$
\sum_{\Delta, I} c_{\Delta, I}^{2} \underbrace{\frac{v^{d} g_{\Delta, I}(u, v)-u^{d} g_{\Delta, I}(v, u)}{u^{d}-v^{d}}}_{F_{d, \Delta, I}}=1
$$

- All possible sums of vectors with positive coefficients define a cone

- Crossing symmetry satisfied $\Leftrightarrow 1$ is inside the cone
- Restrictions on the spectrum make the cone narrower

Geometric interpretation

$$
\sum_{\Delta, I} c_{\Delta, I}^{2} \underbrace{\frac{v^{d} g_{\Delta, I}(u, v)-u^{d} g_{\Delta, I}(v, u)}{u^{d}-v^{d}}}_{F_{d, \Delta, I}}=1
$$

- All possible sums of vectors with
 positive coefficients define a cone
- Crossing symmetry satisfied $\Leftrightarrow 1$ is inside the cone
- Restrictions on the spectrum make the cone narrower
- A cone too narrow can't satisfy crossing symmetry: inconsistent spectrum

Geometric interpretation

How can we distinguish feasible spectra from unfeasible ones?

Geometric interpretation

How can we distinguish feasible spectra from unfeasible ones?

For unfeasible spectra it exists a plane separating the cone and the vector.

Geometric interpretation

How can we distinguish feasible spectra from unfeasible ones?

For unfeasible spectra it exists a plane separating the cone and the vector.
More formally...
Look for a Linear functional

$$
\Lambda\left[F_{d, \Delta, I}\right] \equiv \sum_{n, m}^{N_{\max }} \lambda_{m n} \partial^{n} \partial^{m} F_{d, \Delta, I}
$$

such that

$$
\Lambda\left[F_{d, \Delta, I}\right]>0 \quad \text { and } \quad \Lambda[1]<0
$$

[Rattazzi,Rychkov,Tonni, AV]

Which spectrum?

Give me a spectrum and l'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

Which spectrum?

Give me a spectrum and l'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension d.

Which spectrum?

Give me a spectrum and l'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension d.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_{0}.

Which spectrum?

Give me a spectrum and l'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension d.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_{0}.
- Question: how large can Δ_{0} be?

Which spectrum?

Give me a spectrum and l'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension d.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_{0}.
- Question: how large can Δ_{0} be?

When $d \lesssim 1.6$, no CFT exists without relevant operator in $\phi \times \phi$
[Poland,Simmons-Duffin, AV]

Comparison with 2D

Minimal models: family of 2D CFT's completely solved:

Comparison with 2D

Minimal models: family of 2D CFT's completely solved:

$$
\sigma \times \sigma \sim 1+\epsilon+\ldots .
$$

... contains:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

Comparison with 2D

Minimal models: family of 2D CFT's completely solved:

$$
\sigma \times \sigma \sim 1+\epsilon+\ldots .
$$

... contains:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

Consider the plane $\Delta_{\sigma}, \Delta_{\epsilon}$:

Comparison with 2D

Minimal models: family of 2D CFT's completely solved:

$$
\sigma \times \sigma \sim 1+\epsilon+\ldots .
$$

... contains:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

Consider the plane $\Delta_{\sigma}, \Delta_{\epsilon}$:

Bound on maximal value of Δ_{ϵ} [Rychkov, AV]

Comparison with 2D

Minimal models: family of 2D CFT's completely solved:

$$
\sigma \times \sigma \sim 1+\epsilon+\ldots .
$$

... contains:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

Consider the plane $\Delta_{\sigma}, \Delta_{\epsilon}$:

Bound on maximal value of Δ_{ϵ} [Rychkov, AV]

A kink signals the presence of the Ising Model

A proliferation of kinks

Compare bounds on the anomalous dimensions for various D:

$$
\gamma_{\phi}=\Delta_{\phi}-\frac{(D-2)}{2} \quad \gamma_{\phi^{2}}=\Delta_{\phi^{2}}-(D-2)
$$

A proliferation of kinks

Compare bounds on the anomalous dimensions for various D:

$$
\gamma_{\phi}=\Delta_{\phi}-\frac{(D-2)}{2} \quad \gamma_{\phi^{2}}=\Delta_{\phi^{2}}-(D-2)
$$

r ééEề Açì åÇçå Nêä́í ëAäâeçéFế içêççã Fåëáçå

A proliferation of kinks

Compare bounds on the anomalous dimensions for various D:

$$
\gamma_{\phi}=\Delta_{\phi}-\frac{(D-2)}{2} \quad \gamma_{\phi^{2}}=\Delta_{\phi^{2}}-(D-2)
$$

r ééEề Açì åÇçå Nêä́í ëAäâeçéFế içêççã Fåëáçå

A proliferation of kinks

Compare bounds on the anomalous dimensions for various D:

$$
\gamma_{\phi}=\Delta_{\phi}-\frac{(D-2)}{2} \quad \gamma_{\phi^{2}}=\Delta_{\phi^{2}}-(D-2)
$$

r ééEề Açì åÇçå Nêä́í ëAäâeçéFế içêççã Fåëáçå

A proliferation of kinks

Compare bounds on the anomalous dimensions for various D:

$$
\gamma_{\phi}=\Delta_{\phi}-\frac{(D-2)}{2} \quad \gamma_{\phi^{2}}=\Delta_{\phi^{2}}-(D-2)
$$

r ééEề Açì åÇçå Nêố ëAäâêçéEếççêçãã Eåëáå å

A family of CFT's

- Bounds smoothly interpolate from 4D to 2D
- Kinks lie on a smooth curve
- Kinks easy to identify for $D \geq 3.2$ and $D \leq 2.5$ (Ising 3D: the hardest..)

Epsilon Expansion: $D=4-\epsilon$

$$
\begin{aligned}
& \gamma_{\phi}=\frac{(N+2) \epsilon^{2}}{4(N+8)^{2}}-\frac{(N+2)\left(N^{2}-56 N-272\right) \epsilon^{3}}{16(N+8)^{4}}+O\left(\epsilon^{3}\right) \\
& \gamma_{\phi^{2}}=\frac{(N+2) \epsilon}{N+8}+\frac{(N+2)(13 N+44) \epsilon^{2}}{2(N+8)^{3}}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

Epsilon Expansion: $D=4-\epsilon$

$$
\begin{aligned}
& \gamma_{\phi}=\frac{(N+2) \epsilon^{2}}{4(N+8)^{2}}-\frac{(N+2)\left(N^{2}-56 N-272\right) \epsilon^{3}}{16(N+8)^{4}}+O\left(\epsilon^{3}\right) \\
& \gamma_{\phi^{2}}=\frac{(N+2) \epsilon}{N+8}+\frac{(N+2)(13 N+44) \epsilon^{2}}{2(N+8)^{3}}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

- Our Kinks
- 1-loop
- 2-loop
- 3-loop

Epsilon Expansion: $D=4-\epsilon$

$$
\begin{aligned}
& \gamma_{\phi}=\frac{(N+2) \epsilon^{2}}{4(N+8)^{2}}-\frac{(N+2)\left(N^{2}-56 N-272\right) \epsilon^{3}}{16(N+8)^{4}}+O\left(\epsilon^{3}\right) \\
& \gamma_{\phi^{2}}=\frac{(N+2) \epsilon}{N+8}+\frac{(N+2)(13 N+44) \epsilon^{2}}{2(N+8)^{3}}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

- - Our prediction
- Borel resumed series: central values and errors
[Guillou,Zinn-Justin]

Conclusions and Future directions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D

Conclusions and Future directions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension

Conclusions and Future directions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension
- Understand the limit $D \longrightarrow 1$

Conclusions and Future directions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension
- Understand the limit $D \longrightarrow 1$
- Partially reconstruct the spectrum of those CFT's
[El-Showk,Paulos,Poland,Simmons-Duffin,AV: in progress]

Conclusions and Future directions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension
- Understand the limit $D \longrightarrow 1$
- Partially reconstruct the spectrum of those CFT's
[El-Showk,Paulos,Poland,Simmons-Duffin,AV: in progress]

Conclusions and Future directions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension
- Understand the limit $D \longrightarrow 1$
- Partially reconstruct the spectrum of those CFT's
[El-Showk,Paulos,Poland,Simmons-Duffin,AV: in progress]
... stay tuned for updates!

