Conformal Field Theories in 3.99 Dimensions

in collaboration with S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin

Alessandro Vichi

August 15, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

590

CFT's	and	epsilon	expansion
0			

Simple results

Fractional dimensions

Outline

CFT's and epsilon expansion

2 CFT Handbook

<□▶ <□▶ < 臣▶ < 臣▶ = 臣 - のへで

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimension
•	0000000	00	0000

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^4$ interaction in $4 - \epsilon$ dimensions

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^4$ interaction in $4 - \epsilon$ dimensions

When $\lambda \sim \epsilon$ the operator ϕ^4 becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^4$ interaction in $4 - \epsilon$ dimensions

When $\lambda \sim \epsilon$ the operator ϕ^4 becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

• in 2D: buy 1 get inf free!

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^4$ interaction in $4 - \epsilon$ dimensions

When $\lambda \sim \epsilon$ the operator ϕ^4 becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!
- in higher D: buy 1 get D free!

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^4$ interaction in $4 - \epsilon$ dimensions

When $\lambda \sim \epsilon$ the operator ϕ^4 becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!
- in higher D: buy 1 get D free!

Natural question: Is the Wilson-Fisher fixed point a CFT? If yes it doesn't live in 4D:

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^4$ interaction in $4 - \epsilon$ dimensions

When $\lambda \sim \epsilon$ the operator ϕ^4 becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!
- in higher D: buy 1 get D free!

Natural question: Is the Wilson-Fisher fixed point a CFT? If yes it doesn't live in 4D:

 $\label{eq:Crossing+Unitarity+Conformal Invariance in 4D \Rightarrow \gamma_{\phi^2} \lesssim 2 + 3.006 \gamma_{\phi}$ [Poland, Simmons-Duffin, AV]

The Wilson-Fisher fixed point

Simplest example of fixed point: $\lambda \phi^4$ interaction in $4 - \epsilon$ dimensions

When $\lambda \sim \epsilon$ the operator ϕ^4 becomes exactly marginal at quantum level \Rightarrow scale invariance.

Scale invariance often a good bargain:

- in 2D: buy 1 get inf free!
- in higher D: buy 1 get D free!

Natural question: Is the Wilson-Fisher fixed point a CFT? If yes it doesn't live in 4D:

 $\label{eq:Crossing+Unitarity+Conformal Invariance in 4D \Rightarrow \gamma_{\phi^2} \lesssim 2 + 3.006 \gamma_{\phi}$ [Poland, Simmons-Duffin, AV]

However at Wilson-Fisher fixed point: $\gamma_{\phi^2}\simeq \sqrt{12\gamma_{\phi}}$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	•••••	00	0000

In D dimensions :

 $M_{\mu
u}$, $P_
ho$, D , $K_\sigma\simeq SO(D|2)$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	000000	00	0000

In D dimensions :

 $M_{\mu
u}$, $P_
ho$, D , $K_\sigma\simeq SO(D|2)$

$$\begin{split} & [\mathcal{D}, P_{\mu}] = i P_{\mu} \\ & [\mathcal{D}, K_{\mu}] = -i K_{\mu} \\ & [K_{\mu}, P_{\nu}] = 2i \left(\eta_{\mu\nu} \mathcal{D} - M_{\mu\nu} \right) \\ & [M_{\mu\nu}, K_{\rho}] = -i \left(\eta_{\mu\rho} K_{\nu} - \eta_{\nu\rho} K_{\mu} \right) \\ & [\mathcal{D}, M_{\mu\nu}] = [P_{\mu}, P_{\nu}] = [K_{\mu}, K_{\nu}] = [\mathcal{D}, \mathcal{D}] = 0 \end{split}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0 000000	00	0000

In D dimensions :

 $M_{\mu
u}$, $P_
ho$, D , $K_\sigma\simeq SO(D|2)$

$$\begin{split} [\mathcal{D}, P_{\mu}] &= i P_{\mu} \\ [\mathcal{D}, K_{\mu}] &= -i K_{\mu} \\ [K_{\mu}, P_{\nu}] &= 2i \left(\eta_{\mu\nu} \mathcal{D} - M_{\mu\nu} \right) \\ [M_{\mu\nu}, K_{\rho}] &= -i \left(\eta_{\mu\rho} K_{\nu} - \eta_{\nu\rho} K_{\mu} \right) \\ [\mathcal{D}, M_{\mu\nu}] &= [P_{\mu}, P_{\nu}] = [K_{\mu}, K_{\nu}] = [\mathcal{D}, \mathcal{D}] = 0 \end{split}$$

Irreducible representations of Conformal Algebra:

• infinite towers of states (or operators) with increasing, equally spaced, dimensions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	● 0 000000	00	0000

In D dimensions :

 $M_{\mu
u}$, $P_
ho$, D , $K_\sigma\simeq SO(D|2)$

$$\begin{split} [\mathcal{D}, P_{\mu}] &= i P_{\mu} \\ [\mathcal{D}, K_{\mu}] &= -i K_{\mu} \\ [K_{\mu}, P_{\nu}] &= 2i \left(\eta_{\mu\nu} \mathcal{D} - M_{\mu\nu} \right) \\ [M_{\mu\nu}, K_{\rho}] &= -i \left(\eta_{\mu\rho} K_{\nu} - \eta_{\nu\rho} K_{\mu} \right) \\ [\mathcal{D}, M_{\mu\nu}] &= [P_{\mu}, P_{\nu}] = [K_{\mu}, K_{\nu}] = [\mathcal{D}, \mathcal{D}] = 0 \end{split}$$

Irreducible representations of Conformal Algebra:

• infinite towers of states (or operators) with increasing, equally spaced, dimensions.

• Lower state is called Primary: $K_{\mu}|s >= 0$.

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0 000000	00	0000

In D dimensions :

 $M_{\mu
u}$, $P_
ho$, D , $K_\sigma\simeq SO(D|2)$

$$\begin{split} [\mathcal{D}, P_{\mu}] &= i P_{\mu} \\ [\mathcal{D}, K_{\mu}] &= -i K_{\mu} \\ [K_{\mu}, P_{\nu}] &= 2i \left(\eta_{\mu\nu} \mathcal{D} - M_{\mu\nu} \right) \\ [M_{\mu\nu}, K_{\rho}] &= -i \left(\eta_{\mu\rho} K_{\nu} - \eta_{\nu\rho} K_{\mu} \right) \\ [\mathcal{D}, M_{\mu\nu}] &= [P_{\mu}, P_{\nu}] = [K_{\mu}, K_{\nu}] = [\mathcal{D}, \mathcal{D}] = 0 \end{split}$$

Irreducible representations of Conformal Algebra:

• infinite towers of states (or operators) with increasing, equally spaced, dimensions.

- Lower state is called Primary: $K_{\mu}|s >= 0$.
- Other states, called Descendants, obtained applying P_μ

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	● 0 000000	00	0000

In D dimensions :

 $M_{\mu
u}$, $P_
ho$, D , $K_\sigma\simeq SO(D|2)$

$$\begin{split} [\mathcal{D}, P_{\mu}] &= iP_{\mu} \\ [\mathcal{D}, K_{\mu}] &= -iK_{\mu} \\ [K_{\mu}, P_{\nu}] &= 2i\left(\eta_{\mu\nu}\mathcal{D} - M_{\mu\nu}\right) \\ [M_{\mu\nu}, K_{\rho}] &= -i\left(\eta_{\mu\rho}K_{\nu} - \eta_{\nu\rho}K_{\mu}\right) \\ [\mathcal{D}, M_{\mu\nu}] &= [P_{\mu}, P_{\nu}] = [K_{\mu}, K_{\nu}] = [\mathcal{D}, \mathcal{D}] = 0 \end{split}$$

Irreducible representations of Conformal Algebra:

- infinite towers of states (or operators) with increasing, equally spaced, dimensions.
- Lower state is called Primary: $K_{\mu}|s >= 0$.
- Other states, called Descendants, obtained applying P_μ
- representation totally characterized by scaling dimension and spin of the primary

Simple results

Fractional dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The Operator Product Expansion

Completeness of the Hilbert space of states \Leftrightarrow OPE:

$$\mathcal{O}_{\Delta_1}(x) \times \mathcal{O}_{\Delta_2}(y) = \frac{1}{|x-y|^{\Delta_1+\Delta_2}} \sum_{\mathcal{O}} C_{12\mathcal{O}} C_{\mu_1\dots\mu_l}(y,\partial^{\nu}) \mathcal{O}_{\Delta}^{\mu_1\dots\mu_l}(y)$$

Simple results

Fractional dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The Operator Product Expansion

Completeness of the Hilbert space of states \Leftrightarrow OPE:

$$\mathcal{O}_{\Delta_{1}}(x) \times \mathcal{O}_{\Delta_{2}}(y) = \frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} \mathcal{C}_{12\mathcal{O}} \mathcal{C}_{\mu_{1}\dots\mu_{l}}(y, \partial^{\nu}) \mathcal{O}_{\Delta}^{\mu_{1}\dots\mu_{l}}(y)$$
$$= \frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} \mathcal{C}_{12\mathcal{O}} \underbrace{\left(\mathcal{C}_{\mu_{1}\dots\mu_{l}}(y)\mathcal{O}_{\Delta}^{\mu_{1}\dots\mu_{l}}(y) + \text{descendants}\right)}_{\text{fixed by conformal symmetry}}$$

Simple results

Fractional dimensions

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

The Operator Product Expansion

Completeness of the Hilbert space of states \Leftrightarrow OPE:

$$\mathcal{O}_{\Delta_{1}}(x) \times \mathcal{O}_{\Delta_{2}}(y) = \frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} \mathcal{C}_{12\mathcal{O}} \mathcal{C}_{\mu_{1}...\mu_{l}}(y, \partial^{\nu}) \mathcal{O}_{\Delta}^{\mu_{1}...\mu_{l}}(y)$$

$$= \frac{1}{|x-y|^{\Delta_{1}+\Delta_{2}}} \sum_{\mathcal{O}} \mathcal{C}_{12\mathcal{O}} \underbrace{\left(\mathcal{C}_{\mu_{1}...\mu_{l}}(y)\mathcal{O}_{\Delta}^{\mu_{1}...\mu_{l}}(y) + \text{descendants}\right)}_{\text{fixed by conformal symmetry}}$$

 C_{12O} are called OPE coefficients and define completely the theory.

Simple results

Fractional dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The power of conformal invariance

Two point function of primaries: completely fixed

$$\langle \mathcal{O}_i(x_1)\mathcal{O}_j(x_2)\rangle = rac{\delta_{ij}}{x_{12}^{2\Delta}}$$
 $x_{12} \equiv |x_1 - x_2|$

Simple results

Fractional dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The power of conformal invariance

Two point function of primaries: completely fixed

$$\langle \mathcal{O}_i(x_1)\mathcal{O}_j(x_2)\rangle = rac{\delta_{ij}}{x_{12}^{2\Delta}}$$
 $x_{12} \equiv |x_1 - x_2|$

Three point function of primaries: fixed modulo a constant

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3^{\mu_1\dots\mu_l}(x_3) \rangle = \frac{C_{12\mathcal{O}}}{x_{12}^{\Delta_1+\Delta_2-\Delta_3}x_{23}^{-\Delta_1+\Delta_2+\Delta_3}x_{13}^{\Delta_1-\Delta_2+\Delta_3}} Z^{\mu} = \frac{x_{13}^{\mu}}{x_{13}^2} - \frac{x_{23}^{\mu}}{x_{23}^2}$$

Simple results

Fractional dimensions

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

The power of conformal invariance

Two point function of primaries: completely fixed

$$\langle \mathcal{O}_i(x_1)\mathcal{O}_j(x_2)\rangle = rac{\delta_{ij}}{x_{12}^{2\Delta}}$$
 $x_{12} \equiv |x_1 - x_2|$

Three point function of primaries: fixed modulo a constant

$$\begin{array}{l} \langle \mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})\mathcal{O}_{3}^{\mu_{1}\dots\mu_{l}}(x_{3})\rangle = \mathcal{C}_{12\mathcal{O}}\frac{Z^{\mu_{1}}\dots Z^{\mu_{l}} - \text{traces}}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}}x_{23}^{-\Delta_{1}+\Delta_{2}+\Delta_{3}}x_{13}^{\Delta_{1}-\Delta_{2}+\Delta_{3}}}\\ Z^{\mu} = \frac{x_{13}^{\mu}}{x_{23}^{2}} - \frac{x_{23}^{\mu}}{x_{23}^{2}} \end{array}$$

Use OPE to reduce higher point functions to smaller ones

CFT's and epsilon expansion	CFT Handbook	Simple results
0	0000000	00

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Four point functions

Recalling the OPE

$$\mathcal{O}(x_1) \times \mathcal{O}(x_2) = \sum_{\mathcal{O}'} \frac{C_{\mathcal{O}'}}{x_{12}^{2d-\Delta}} (\mathcal{O}'_{\Delta,l} + \text{descendants})$$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
р С	000000	00	0000

Four point functions

Recalling the OPE

$$\mathcal{O}(x_1) \times \mathcal{O}(x_2) = \sum_{\mathcal{O}'} \frac{C_{\mathcal{O}'}}{x_{12}^{2d-\Delta}} (\mathcal{O}'_{\Delta,l} + \text{descendants})$$

Then

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4) \rangle = \frac{u^{-d}}{(x_{13}^{2d}x_{24}^{2d})} \sum_{O'_{\Delta,l}} C_{\mathcal{O}'}^2 \underbrace{(\langle O'_{\Delta,l} O'_{\Delta,l} \rangle + \text{descendants})}_{\text{function of } u, v \text{ only by conformal symmetry}}$$
$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} \qquad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	000000	00	0000

Four point functions

Recalling the OPE

$$\mathcal{O}(x_1) \times \mathcal{O}(x_2) = \sum_{\mathcal{O}'} \frac{\mathcal{C}_{\mathcal{O}'}}{x_{12}^{2d-\Delta}} (\mathcal{O}'_{\Delta,l} + \text{descendants})$$

Then

$$\begin{array}{l} \langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{u^{-d}}{(x_{13}^{2d}x_{24}^{2d})}\sum_{O'_{\Delta,I}}C^2_{\mathcal{O}'}\underbrace{(\langle O'_{\Delta,I}O'_{\Delta,I}\rangle + \text{descendants})}_{\text{function of } u, v \text{ only by conformal symmetry}} \\ u = \frac{x_{12}^2x_{34}^2}{x_{13}^2x_{24}^2} \qquad v = \frac{x_{14}^2x_{23}^2}{x_{13}^2x_{24}^2} \end{aligned}$$

Conformal Blocks

$$g_{\Delta,l}(u, v) \equiv \langle O'_{\Delta,l} O'_{\Delta,l} \rangle + \text{descendants}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

They sum up the contribution of an entire representation

Simple results

Fractional dimensions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

• ('01: Dolan, Osborn): summed up all the contribution in a closed for for D=2,4

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

- ('01: Dolan, Osborn): summed up all the contribution in a closed for for D=2,4
- ('03: Dolan, Osborn): solved a 2nd order differential equation the conformal blocks satisfy:

$$\left((M_{\mu\nu})^2 - P_{\mu}K^{\mu} + 2D^2\right)g_{\Delta,l}(u,v) = \lambda_{\Delta,l} \ g_{\Delta,l}(u,v)$$

solution only in even dimensions

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

More on Conformal Blocks

Old idea (70's) but none could use them for long time, until..

- ('01: Dolan, Osborn): summed up all the contribution in a closed for for D=2,4
- ('03: Dolan, Osborn): solved a 2nd order differential equation the conformal blocks satisfy:

$$((M_{\mu\nu})^2 - P_{\mu}K^{\mu} + 2D^2) g_{\Delta,l}(u, v) = \lambda_{\Delta,l} g_{\Delta,l}(u, v)$$

solution only in even dimensions

 ('13: El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, AV): efficient method to compute Taylor coefficients of conformal block in any dimension. (See David Simmons-Duffin's talk).

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	00000000	00	0000

Which expansion is the right one?

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle$$
 vs $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	00000000	00	0000

Which expansion is the right one?

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle$$

vs $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

They must produce the same result:

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	00000000	00	0000

Which expansion is the right one?

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle$$
 vs

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

They must produce the same result:

Constraint
$$u^{-d}\left(1+\sum_{\Delta,l}C^{2}_{\Delta,l}g_{\Delta,l}(u,v)\right)=v^{-d}\left(1+\sum_{\Delta,l}C^{2}_{\Delta,l}g_{\Delta,l}(v,u)\right) \qquad d=[\mathcal{O}]$$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	00000000	00	0000

Which expansion is the right one?

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle$$

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)$$

They must produce the same result:

Constraint
$$u^{-d}\left(1+\sum_{\Delta,l}C_{\Delta,l}^{2}g_{\Delta,l}(u,v)\right)=v^{-d}\left(1+\sum_{\Delta,l}C_{\Delta,l}^{2}g_{\Delta,l}(v,u)\right) \qquad d=[\mathcal{O}]$$

VS

- $F_{d,\Delta,l}$ known functions
- $C^2_{\Delta,l}$ unknown coefficients

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Simple results

Fractional dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Geometric interpretation

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

CFT's	and	epsilon	expansion
0			

Simple results

Fractional dimensions

Geometric interpretation

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

• All possible sums of vectors with positive coefficients define a cone

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Simple results

Fractional dimensions

Geometric interpretation

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

- All possible sums of vectors with positive coefficients define a cone
- Crossing symmetry satisfied ⇔ 1 is inside the cone

・ロト・西ト・ヨト ・ヨト・ 白ト

Simple results

Fractional dimensions

Geometric interpretation

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

- All possible sums of vectors with positive coefficients define a cone
- Crossing symmetry satisfied ⇔ 1 is inside the cone
- Restrictions on the spectrum make the cone narrower

イロト イポト イヨト イヨト

Sac

Simple results

Fractional dimensions

Geometric interpretation

$$\sum_{\Delta,l} C_{\Delta,l}^2 \underbrace{\frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}}_{F_{d,\Delta,l}} = 1$$

- All possible sums of vectors with positive coefficients define a cone
- Crossing symmetry satisfied inside the cone
- Restrictions on the spectrum make the cone narrower

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

 A cone too narrow can't satisfy crossing symmetry: inconsistent spectrum

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimension
0	0000000	00	0000

Geometric interpretation

How can we distinguish feasible spectra from unfeasible ones?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	00	0000

Geometric interpretation

How can we distinguish feasible spectra from unfeasible ones?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For unfeasible spectra it exists a plane separating the cone and the vector.

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	00	0000

Geometric interpretation

How can we distinguish feasible spectra from unfeasible ones?

For unfeasible spectra it exists a plane separating the cone and the vector.

More formally...

Look for a Linear functional

$$\Lambda[F_{d,\Delta,I}] \equiv \sum_{n,m}^{N_{\text{max}}} \lambda_{mn} \partial^n \partial^m F_{d,\Delta,I}$$

such that

 $\Lambda[F_{d,\Delta,l}] > 0$ and $\Lambda[1] < 0$

[Rattazzi, Rychkov, Tonni, AV]

CFT's and epsilon expansion O	CFT Handbook	Simple results	Fractional dimensions
Which spectrum?			
Give me a spectrum a	and I'll tell you if it respec	ts crossing symmetry	
Ex: Scalar field in 4D			

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

CFT's O	and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
Wh	ich spectrum?			
VVI				
	Give me a spectrum and I'	ll tell you if it respe	cts crossing symmetry	
	Ex: Scalar field in 4D			
	• Take a scalar field ϕ v	with dimension d.		

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

CFT's and epsilon expansion O	CFT Handbook 00000000	Simple results	Fractional dimensions
Which spectrum?			

Give me a spectrum and I'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension *d*.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
O	00000000	●O	
Which spectrum?			

Give me a spectrum and I'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension *d*.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_0 .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Question: how large can Δ₀ be?

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
O	00000000	●O	
Which spectrum?			

Give me a spectrum and I'll tell you if it respects crossing symmetry

Ex: Scalar field in 4D

- Take a scalar field ϕ with dimension *d*.
- Assume the OPE $\phi \times \phi$ contains scalar operators with dimension larger than Δ_0 .
- Question: how large can Δ₀ be?

When $d \lesssim 1.6$, no CFT exists without relevant operator in $\phi \times \phi$ [Poland,Simmons-Duffin, AV]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	0	0000

Minimal models: family of 2D CFT's completely solved:

CFT's and epsilon expansion O	CFT Handbook 00000000	Simple results	Fractional dimensions

Minimal models: family of 2D CFT's completely solved:

 $\sigma \times \sigma \sim 1 + \epsilon + \dots$

... contains:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

CFT's and epsilon expansion O	CFT Handbook 00000000	Simple results	Fractional dimensions

Minimal models: family of 2D CFT's completely solved:

$$\sigma \times \sigma \sim 1 + \epsilon + \dots$$

Consider the plane Δ_{σ} , Δ_{ϵ} :

... contains:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	0.	0000

Minimal models: family of 2D CFT's completely solved:

$$\sigma \times \sigma \sim \mathbf{1} + \epsilon + \dots$$

Consider the plane Δ_{σ} , Δ_{ϵ} :

contains: Other Virasoro primaries Virasoro Descendants Conformal descendants

Bound on maximal value of Δ_{ϵ} [Rychkov, AV]

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

CFT's and epsilon expansion O	CFT Handbook 00000000	Simple results	Fractional dimensions

Minimal models: family of 2D CFT's completely solved:

$$\sigma \times \sigma \sim \mathbf{1} + \epsilon + \dots$$

Consider the plane Δ_{σ} , Δ_{ϵ} :

contains: Other Virasoro primaries Virasoro Descendants Conformal descendants

Bound on maximal value of Δ_{ε} [Rychkov, AV]

A kink signals the presence of the Ising Model

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	00	0 000

Compare bounds on the anomalous dimensions for various D:

$$\gamma_{\phi}=\Delta_{\phi}-rac{(D-2)}{2}$$
 $\gamma_{\phi^2}=\Delta_{\phi^2}-(D-2)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	00	● 0 00

$$\gamma_{\phi} = \Delta_{\phi} - rac{(D-2)}{2}$$
 $\gamma_{\phi^2} = \Delta_{\phi^2} - (D-2)$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	00	● 0 00

$$\gamma_{\phi}=\Delta_{\phi}-rac{(D-2)}{2}$$
 $\gamma_{\phi^2}=\Delta_{\phi^2}-(D-2)$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	00	● 0 00

$$\gamma_{\phi}=\Delta_{\phi}-rac{(D-2)}{2}$$
 $\gamma_{\phi^2}=\Delta_{\phi^2}-(D-2)$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	00	0000

$$\gamma_{\phi} = \Delta_{\phi} - rac{(D-2)}{2}$$
 $\gamma_{\phi^2} = \Delta_{\phi^2} - (D-2)$

CFT's	and	epsilon	expansion
0			

Simple results

Fractional dimensions

ヘロト 人間 ト 人 油 ト 人 油 ト 一 油 一

990

A family of CFT's

- Bounds smoothly interpolate from 4D to 2D
- Kinks lie on a smooth curve
- Kinks easy to identify for $D \ge 3.2$ and $D \le 2.5$ (Ising 3D: the hardest..)

CFT's	and	epsilon	expansion
0			

Simple results

Fractional dimensions

Epsilon Expansion: $D = 4 - \epsilon$

$$\begin{split} \gamma_{\phi} &= \frac{(N+2)\epsilon^2}{4(N+8)^2} - \frac{(N+2)\left(N^2 - 56N - 272\right)\epsilon^3}{16(N+8)^4} + O(\epsilon^3) \\ \gamma_{\phi^2} &= \frac{(N+2)\epsilon}{N+8} + \frac{(N+2)(13N+44)\epsilon^2}{2(N+8)^3} + O(\epsilon^3) \end{split}$$

CFT's and epsilon expansion	CFT Handbook	Simple results	Fractional dimensions
0	0000000	00	0000

Epsilon Expansion: $D = 4 - \epsilon$

$$\begin{split} \gamma_{\phi} &= \frac{(N+2)\epsilon^2}{4(N+8)^2} - \frac{(N+2)\left(N^2 - 56N - 272\right)\epsilon^3}{16(N+8)^4} + O(\epsilon^3) \\ \gamma_{\phi^2} &= \frac{(N+2)\epsilon}{N+8} + \frac{(N+2)(13N+44)\epsilon^2}{2(N+8)^3} + O(\epsilon^3) \end{split}$$

Comparison with epsilon-expansion at 1-2-3 loops

CFT's	and	epsilon	expansion
0			

Simple results

Fractional dimensions

Epsilon Expansion: $D = 4 - \epsilon$

$$\begin{split} \gamma_{\phi} &= \frac{(N+2)\epsilon^2}{4(N+8)^2} - \frac{(N+2)\left(N^2 - 56N - 272\right)\epsilon^3}{16(N+8)^4} + O(\epsilon^3) \\ \gamma_{\phi^2} &= \frac{(N+2)\epsilon}{N+8} + \frac{(N+2)(13N+44)\epsilon^2}{2(N+8)^3} + O(\epsilon^3) \end{split}$$

Simple results

Fractional dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Conclusions and Future directions

• Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D

Fractional dimensions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension

Fractional dimensions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension
- Understand the limit $D \longrightarrow 1$

Fractional dimensions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension
- Understand the limit $D \longrightarrow 1$
- Partially reconstruct the spectrum of those CFT's [El-Showk,Paulos,Poland,Simmons-Duffin,AV: in progress]

Fractional dimensions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension
- Understand the limit $D \longrightarrow 1$
- Partially reconstruct the spectrum of those CFT's [El-Showk,Paulos,Poland,Simmons-Duffin,AV: in progress]

Fractional dimensions

- Strong indications that there exists a families of CFT's connecting Ising 2D, Ising 3D and Free theory in 4D
- Each CFT satisfies Crossing Constraint in its space-time dimension
- Understand the limit $D \longrightarrow 1$
- Partially reconstruct the spectrum of those CFT's [EI-Showk,Paulos,Poland,Simmons-Duffin,AV: in progress]
- ... stay tuned for updates!