The Search for Invisible Higgs Boson Production
With the CMS Detector at the LHC

Matthew E. Chasco
For the CMS Collaboration
August 15, 2013
Outline

Experimental Apparatus
- The CMS Detector

Intro To Invisible Higgs Boson
- Invisible Higgs and ZZ Production

Samples and Modeling
- Monte Carlo and DataSets

The Search Strategy
- Utilizing Missing Energy

Event Selection
- Background Estimation with Data

Uncertainties
- Systematics

Results
- Final Yields
- Limit Results

Conclusion
Outline

Experimental Apparatus
The CMS Detector
Intro To Invisible Higgs Boson
Invisible Higgs and ZZ Production
Samples and Modeling
Monte Carlo and DataSets
The Search Strategy
Utilizing Missing Energy

Event Selection
Background Estimation with Data
Uncertainties
Systematics
Results
Final Yields
Limit Results
Conclusion
The Compact Muon Solenoid (CMS) Detector

- **Inner silicon tracker**
 - determines tracks and vertices of charged particles
 - electron, muon, jet
- **PbWO₄ ECAL**
 - measures energy and location of electrons
- **Brass-scintillator HCAL**
 - measures energy of jets
- **Muon chambers**
 - measures location and momentum of muons
- **Combine information from subdetectors to measure missing transverse energy**
Outline

Experimental Apparatus
- The CMS Detector

Intro To Invisible Higgs Boson
- Invisible Higgs and ZZ Production

Samples and Modeling
- Monte Carlo and DataSets

The Search Strategy
- Utilizing Missing Energy

Event Selection
- Background Estimation with Data

Uncertainties
- Systematics

Results
- Final Yields
- Limit Results

Conclusion
Invisible Higgs and ZZ Production

Signal: Invisible Decay Modes

- Z boson Higgs-strahlung
- Higgs decay products invisible to detector
 - Not a Standard Model phenomenon
 - Model-independent search
- Some theorized decay modes:
 - Decay into pair of Stable neutral Lightest SUSY Particles (LSP)
 - neutralinos (1)
 - Large extra dimensions
 - Higgs oscillates into a graviscalar and disappears from our brane (2)
 - Decay into pair of graviscalars (3)
 - Decay into light neutrino and heavy neutrino (4)
- Explore range of Higgs masses
 - 105-145 GeV
Invisible Higgs and ZZ Production

Main Background: ZZ Production

- Same final state as $ZH \rightarrow \ell^+\ell^- + H(\text{inv})$
 - Two leptons from Z decay
 - Large E_T
- Irreducible Background
 - Comprises $\sim 70\%$ of total background at final selection
- Some kinematic differences between ZZ and ZH
 - Mass difference between Z and Higgs
Outline

Experimental Apparatus
 The CMS Detector
Intro To Invisible Higgs Boson
 Invisible Higgs and ZZ Production
Samples and Modeling
 Monte Carlo and DataSets
The Search Strategy
 Utilizing Missing Energy
Event Selection
Background Estimation with Data
Uncertainties
 Systematics
Results
 Final Yields
 Limit Results
Conclusion
Monte Carlo and Datasets

MC Samples For Signal And Background, and Datasets

Calculations

- NLO $\sigma(ZZ)$, $\sigma(WZ)$ computed using MCFM
- $\sigma(ZH)$ computed at NNLO in QCD, and NLO in EW (5)

Datasets

- full 2011 and 2012 data samples at 7 TeV and 8 TeV
- Integrated luminosity at $\sqrt{s} = 7$ TeV: 5.1 fb^{-1}
- Integrated luminosity at $\sqrt{s} = 8$ TeV: 19.6 fb^{-1}
Outline

Experimental Apparatus
- The CMS Detector

Intro To Invisible Higgs Boson
- Invisible Higgs and ZZ Production

Samples and Modeling
- Monte Carlo and DataSets

The Search Strategy
- Utilizing Missing Energy

Event Selection
- Background Estimation with Data

Uncertainties
- Systematics

Results
- Final Yields
- Limit Results

Conclusion
Hadronic Recoil

- \(ZH \rightarrow \ell^+ \ell^- + H(\text{inv}) \) and \(ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu} \) characterized by large \(\not{E}_T \) from neutrinos and/or non-standard particles
- Dominant background: \(Z + \text{jets} \) with mis-measured large \(\not{E}_T \)
 - \(\sigma(Z + \text{jets}) > 10^5 \cdot \sigma(ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}) \)
- The goal is to reduce \(\not{E}_T \) of imbalanced events to effectively subtract the hadronic recoil and suppresses \(Z + \text{jets} \) (6)
- \(\text{red-} \not{E}_T \) variable:
 - \(\text{red-} \not{E}^i_T = p_T^{\ell \ell i} + \min(R_{cl}^i, R_{uncl}^i) \)
 - \(i = \perp, \parallel \) to dilepton \(p_T \)
 - \(R_{cl} \rightarrow N_{\text{jets}} \sum_{\text{jet}} p_T^{\text{jet}} \)
 - \(R_{uncl} \rightarrow - \not{E}_T - p_T^{\ell \ell} \)
 - \(\text{red-} \not{E}_T = |\text{red-} \not{E}_T| \)
Event Selection

Discriminating Variables

<table>
<thead>
<tr>
<th>Main selection cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Two leptons:</td>
</tr>
<tr>
<td>▶ well-identified, isolated, same flavor leptons</td>
</tr>
<tr>
<td>▶ $p_T^\ell > 20$ GeV</td>
</tr>
<tr>
<td>▶ Reject events with jets if:</td>
</tr>
<tr>
<td>▶ $E_T > 30$ GeV</td>
</tr>
<tr>
<td>▶ bjet:</td>
</tr>
<tr>
<td>▶ soft-muon ($p_T > 3$ GeV)</td>
</tr>
<tr>
<td>▶ b-tag and ($p_T > 20$ GeV and $</td>
</tr>
<tr>
<td>▶ Reject events with additional leptons if $p_T > 10$ GeV</td>
</tr>
<tr>
<td>▶ $</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+ Optimized cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ $\Delta \phi_{\ell\ell} - \not{E_T} > 2.6$</td>
</tr>
<tr>
<td>▶ $0.8 < \frac{\not{E_T}}{p_T^{\ell\ell}} < 1.2$</td>
</tr>
<tr>
<td>▶ $red\cdot \not{E_T} > 110$ GeV</td>
</tr>
</tbody>
</table>
Event Selection

Reduced Missing Energy

Preference of red-E_T over E_T

- Performs better in signal efficiency and Drell-Yan background suppression
- Found to be more stable under pile-up condition and jet energy scale variations
Other Optimization Variables

- Both used in ZH optimization along with \(\text{red-}\slashed{E}_T \)
 - Optimized to obtain best expected exclusion limits at 95% C.L.
- Suppress Drell-Yan and Top processes
Non-Resonant Background Estimation

- Non-resonant backgrounds are mainly leptonic W decays
 - WW, tW, t\bar{t}, single top, Z → \tau\tau
- Calculate scale factors from data control region of $e^\pm \mu^\mp$ and $\ell^+\ell^-$ (e^+e^- or $\mu^+\mu^-$) events that pass selection cuts
 - Z-peak sidebands $40 < m_{\ell\ell} < 70$ GeV and $110 < m_{\ell\ell} < 200$ GeV
- Apply scale factors $\alpha_{\ell\ell} = \frac{N_{SB}^{e\mu}}{N_{e\mu}^{SB}}$
 - $N_{\ell\ell}^{peak} = \alpha_{\ell\ell} \cdot N_{e\mu}^{peak}$
- Checked with closure test
Background Estimation with Data

Z + jets Background Estimation

- Normalized to $Z + jets$
- Reweighting factors as function of p_T^Z and number of reconstructed vertices
- Subtract EW processes with photons and neutrinos (MC)
- Modeling is improved for $\text{red-}E_T$ distribution for $Z + jet$

- Modeled from orthogonal $\gamma + jets$ control sample
 - Larger statistics and topologically equivalent
 - MC may not fully model detector and pile-up effects in tail of $\text{red-}E_T$

![Graph showing background estimation with data](image-url)
Outline

Experimental Apparatus
- The CMS Detector

Intro To Invisible Higgs Boson
- Invisible Higgs and ZZ Production

Samples and Modeling
- Monte Carlo and DataSets

The Search Strategy
- Utilizing Missing Energy

Event Selection
- Background Estimation with Data

Uncertainties
- Systematics

Results
- Final Yields
- Limit Results

Conclusion
Systematic Uncertainties of ZH Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Uncertainty(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>PDF</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>QCD scale variation (ZH)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>QCD scale variation (VV)</td>
<td>7-10</td>
</tr>
<tr>
<td></td>
<td>Luminosity</td>
<td>2.2-4.4</td>
</tr>
<tr>
<td></td>
<td>Lepton Trigger, Reco., Iso.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$Z/\gamma^* \rightarrow \ell\ell$ normalization</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Top, WW, W+jets normalization</td>
<td>25-100</td>
</tr>
<tr>
<td>Shape and Rate</td>
<td>MC statistics ZH,ZZ,WW</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>Control sample statistics $Z/\gamma^* \rightarrow \ell\ell$</td>
<td>12-24</td>
</tr>
<tr>
<td></td>
<td>Control sample statistics NRB</td>
<td>53-100</td>
</tr>
<tr>
<td></td>
<td>Pile-up</td>
<td>0.1-0.3</td>
</tr>
<tr>
<td></td>
<td>b-tagging Efficiency</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Lepton Momentum Scale</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Jet Energy Scale, Resolution</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Unclustered energy</td>
<td>1-4</td>
</tr>
</tbody>
</table>

- Combined relative signal efficiency uncertainty 12%
 - Theoretical uncertainty
 - PDF uncertainties
- Total relative uncertainty on background estimation 15%
 - Theoretical uncertainty (ZZ, WZ)
Outline

Experimental Apparatus
 The CMS Detector
Intro To Invisible Higgs Boson
 Invisible Higgs and ZZ Production
Samples and Modeling
 Monte Carlo and DataSets
The Search Strategy
 Utilizing Missing Energy

Event Selection
 Background Estimation with Data
Uncertainties
 Systematics

Results
 Final Yields
 Limit Results

Conclusion
Final Yields of ZH Analysis

<table>
<thead>
<tr>
<th>Process</th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 8$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ZH(m_H = 125$ GeV)</td>
<td>2.2 ± 0.3</td>
<td>11.8 ± 1.9</td>
</tr>
<tr>
<td>$Z/\gamma^* \to \ell^+\ell^-$</td>
<td>0.3 ± 0.3</td>
<td>1.0 ± 1.0</td>
</tr>
<tr>
<td>Top/WW/ $W + jets$</td>
<td>0.4 ± 0.4</td>
<td>1.3 ± 0.8</td>
</tr>
<tr>
<td>$WZ \to 3\ell\nu$</td>
<td>2.0 ± 0.3</td>
<td>11.0 ± 1.6</td>
</tr>
<tr>
<td>$ZZ \to \ell^+\ell^-\nu\bar{\nu}$</td>
<td>5.1 ± 0.6</td>
<td>29.8 ± 3.6</td>
</tr>
<tr>
<td>total bkgd</td>
<td>7.8 ± 0.8</td>
<td>43.1 ± 4.1</td>
</tr>
<tr>
<td>Data</td>
<td>10</td>
<td>33</td>
</tr>
</tbody>
</table>

![7 TeV Background Yields](image1.png)

![8 TeV Background Yields](image2.png)
Shape Analysis for Invisible Higgs

\[m_T^2 = \left(\sqrt{p_{T}^{\ell\ell} + m_{\ell\ell}^2} + \sqrt{E_T^2 + m_{\ell\ell}^2} \right)^2 - \left(p_{T}^{\ell\ell} + E_T^* \right)^2 \]

Exploit differences in kinematics

\[ZZ \rightarrow \ell^+\ell^- \nu\bar{\nu} \quad \text{and} \quad ZH \rightarrow \ell^+\ell^- + H(\text{inv}) \] both have missing energy, but mass of missing particle is different

Shape used for all Higgs masses

\[105, 115, 125, 135, 145 \text{ GeV} \]
Limits on Invisible Higgs Decay

- Upper limit on $BR(H \to \text{invisible})$
 - Assume SM production rate
- Use modified frequentist construction CL_s
- Use Shape of Transverse Mass of Z and H

For Higgs with $m_H = 125$ GeV
- Observed 95% C.L. upper limit 75%
- Expected 95% C.L. upper limit 91%

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>105</th>
<th>115</th>
<th>125</th>
<th>135</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs Lim(%)</td>
<td>60</td>
<td>63</td>
<td>75</td>
<td>82</td>
<td>85</td>
</tr>
<tr>
<td>Exp Lim(%)</td>
<td>73</td>
<td>79</td>
<td>91</td>
<td>97</td>
<td>105</td>
</tr>
</tbody>
</table>
Outline

Experimental Apparatus
 The CMS Detector
Intro To Invisible Higgs Boson
 Invisible Higgs and ZZ Production
Samples and Modeling
 Monte Carlo and DataSets
The Search Strategy
 Utilizing Missing Energy

Event Selection
 Background Estimation with Data
Uncertainties
 Systematics
Results
 Final Yields
 Limit Results

Conclusion
Conclusions and looking forward.

- Set limits on invisible higgs branching fraction for SM-range masses
 - $m_H = 105$ GeV: Observed limit: $= 60\%$, Expected limit: $= 73\%$
 - $m_H = 115$ GeV: Observed limit: $= 63\%$, Expected limit: $= 79\%$
 - $m_H = 125$ GeV: Observed limit: $= 75\%$, Expected limit: $= 91\%$
 - $m_H = 135$ GeV: Observed limit: $= 82\%$, Expected limit: $= 97\%$
 - $m_H = 145$ GeV: Observed limit: $= 85\%$, Expected limit: $= 105\%$

- Comparable results to CMS and ATLAS indirect and direct searches (7) (8) (9)

- Continue analysis to explore Higgs masses beyond 150 GeV

- CMS-PAS-HIG-13-018 (10)
References

