

The Search for Invisible Higgs Boson Production With the CMS Detector at the LHC

Matthew E. Chasco

For the CMS Collaboration

August 15, 2013

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Experimental Apparatus The CMS Detector Intro To Invisible Higgs Boson Invisible Higgs and ZZ Production Samples and Modeling Monte Carlo and DataSets The Search Strategy Utilizing Missing Energy Event Selection Background Estimation with Data Uncertainties Systematics Results Final Yields Limit Results Conclusion

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Experimental Apparatus The CMS Detector

Intro To Invisible Higgs Boson Invisible Higgs and ZZ Production Samples and Modeling Monte Carlo and DataSets The Search Strategy Utilizing Missing Energy Event Selection Background Estimation with Data Uncertainties Systematics Results Final Yields Limit Results Conclusion

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
•	00	0	0 000 00	0	000		

The CMS Detector

The Compact Muon Solenoid (CMS) Detector

- Inner silicon tracker
 - determines tracks and vertices of charged particles
 - electron, muon, jet
- PbWO₄ ECAL
 - measures energy and location of electrons

- Brass-scintillator HCAL
 - measures energy of jets
- Muon chambers
 - measures location and momentum of muons
- Combine information from subdetectors to measure missing transverse energy

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Experimental Apparatus The CMS Detector Intro To Invisible Higgs Boson Invisible Higgs and ZZ Production Samples and Modeling Monte Carlo and DataSets The Search Strategy Event Selection Background Estimation with Data Uncertainties Systematics Results Final Yields Limit Results Conclusion

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	•0	0	0 000 00	0	000		

Invisible Higgs and ZZ Production

Signal: Invisible Decay Modes

- Z boson Higgs-strahlung
- Higgs decay products invisible to detector
 - Not a Standard Model phenomenon
 - Model-independent search
- Some theorized decay modes:
 - Decay into pair of Stable neutral Lightest SUSY Particles (LSP)
 - neutralinos (1)
 - Large extra dimensions
 - Higgs oscillates into a graviscalar and disappears from our brane (2)
 - Decay into pair of graviscalars
 (3)
 - Decay into light neutrino and heavy neutrino (4)
- Explore range of Higgs masses
 - 105-145 GeV

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	0•	0	0 000 00	0	000		

Invisible Higgs and ZZ Production

Main Background: ZZ Production

- Same final state as $ZH \rightarrow \ell^+ \ell^- + H(inv)$
 - Two leptons from Z decay
 - ► Large ∉_T
- Irreducible Background
 - Comprises ~70% of total background at final selection
- Some kinematic differences between ZZ and ZH
 - Mass difference between Z and Higgs

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Experimental Apparatus The CMS Detector Intro To Invisible Higgs Boson Invisible Higgs and ZZ Production Samples and Modeling Monte Carlo and DataSets The Search Strategy

Utilizing Missing Energy

Event Selection Background Estimation with Data Uncertainties Systematics Results Final Yields Limit Results

· · · · · · · · · · · · · · · · · · ·	Experime	imental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
00	0		00	•	0 000 00	0	000		

Monte Carlo and DataSets

MC Samples For Signal And Background, and Datasets

Generators

- ► All ZH samples, tt̄, tW generated with POWHEG (v2.0)
- ► *Z* + *jets*, and diboson with MADGRAPH (v5.1.3)
- Detector response modeled with GEANT4
- PDFs modeled through:
 - CTEQ6L parameterization at LO
 - CT10 parameterization at NLO

Calculations

- NLO σ(ZZ), σ(WZ) computed using MCFM
- σ(ZH) computed at NNLO in QCD, and NLO in EW (5)

Datasets

- full 2011 and 2012 data samples at 7 TeV and 8 TeV
- ► Integrated luminosity at √s = 7 TeV: 5.1 fb⁻¹
- ► Integrated luminosity at √s = 8 TeV: 19.6 fb⁻¹

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Experimental Apparatus The CMS Detector Intro To Invisible Higgs Boson Invisible Higgs and ZZ Production Samples and Modeling Monte Carlo and DataSets The Search Strategy

Utilizing Missing Energy

Event Selection Background Estimation with Data

Uncertainties

Systematics

Results

Final Yields Limit Results

Conclusion

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	• 000 00	0	000		

Utilizing Missing Energy

Hadronic Recoil

- ► $ZH \rightarrow \ell^+ \ell^- + H(inv)$ and $ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ characterized by large $\not{\!\!\!E}_T$ from neutrinos and/or non-standard particles
- ▶ Dominant background: Z + jets with mis-measured large ∉_T
 - $\sigma(Z + jets) > 10^5 \cdot \sigma(ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu})$
- ► The goal is to reduce ∉_T of imbalanced events to effectively subtract the hadronic recoil and suppresses Z + jets (6)
- red-∉_T variable:
 - $red \not\!\!E_T^i = p_T^{\ell \ell i} + min(R_{cl}^i, R_{uncl}^i)$ • $i = \bot, \parallel$ to dilepton p_T

$$\overrightarrow{R_{cl}} = \sum_{j \neq t}^{N_{jets}} \overrightarrow{p_T^{jet}}$$

$$\overrightarrow{R_{uncl}} = -\overrightarrow{E_T} - \overrightarrow{p_T^{\ell_l}}$$

$$\overrightarrow{red} \cdot \overrightarrow{E_T} = |\overrightarrow{red} \cdot \overrightarrow{E_T}|$$

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	○ ●○○ ○○	0	000		

Event Selection

Discriminating Variables

Main selection cuts

- Two leptons:
 - well-identified, isolated, same flavor leptons
 - ▶ $p_T^\ell > 20 \text{ GeV}$
- Reject events with jets if:
 - ▶ *E*_T > 30 GeV
 - bjet:
 - soft-muon (p_T > 3 GeV)
 - b-tag and $(p_T > 20$ GeV and $|\eta| < 2.5)$
- Reject events with additional leptons if p_T > 10 GeV
- ▶ $|m_{\ell\ell} m_Z| < 15 \,\,{\rm GeV}$

+ Optimized cuts

$$\Delta \phi_{\ell\ell-\not \! E_T} > 2.6$$

•
$$0.8 < \frac{\not \! E_T}{p_T^{\ell \ell}} < 1.2$$

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0		0	000		

Event Selection

Reduced Missing Energy

- Performs better in signal efficiency and Drell-Yan background suppression
- Found to be more stable under pile-up condition and jet energy scale variations

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0		0	000		

Event Selection

Other Optimization Variables

- - Optimized to obtain best expected exclusion limits at 95% C.L.
- Suppress Drell-Yan and Top processes

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0		0	000		

Background Estimation with Data

Non-Resonant Background Estimation

 Non-resonant backgrounds are mainly leptonic W decays

- WW, tW, $t\bar{t}$, single top, $Z \rightarrow \tau \tau$
- ► Calculate scale factors from data control region of $e^{\pm}\mu^{\mp}$ and $\ell^{+}\ell^{-}$ ($e^{+}e^{-}$ or $\mu^{+}\mu^{-}$) events that pass selection cuts
 - Z-peak sidebands $40 < m_{\ell\ell} < 70 \text{ GeV}$ and $110 < m_{\ell\ell} < 200 \text{ GeV}$

► Apply scale factors
$$\alpha_{\ell\ell} = \frac{N_{\ell\ell}^{SB}}{N_{e\mu}^{SB}}$$

► $N_{\ell\ell}^{peak} = \alpha_{\ell\ell} \cdot N_{e\mu}^{peak}$

Checked with closure test

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 0●	0	000		

Background Estimation with Data

- Modeled from orthogonal $\gamma + jets$ control sample
 - larger statistics and topologically equivalent
 - MC may not fully model detector and pile-up effects in tail of red-∉_T

- ▶ Normalize to *Z* + *jets*
- Reweighting factors as function of p_T^Z and number of reconstructed vertices
- Subtract EW processes w/ photons and neutrinos (MC)
- ► Modeling is improved for red-∉_T distribution for Z + jet

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Experimental Apparatus The CMS Detector Intro To Invisible Higgs Boson Invisible Higgs and ZZ Production Samples and Modeling Monte Carlo and DataSets The Search Strategy Utilizing Missing Energy Event Selection Background Estimation with Data Uncertainties Systematics Results Final Yields Limit Results

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	•	000		

Systematics

Systematic Uncertainties of ZH Analysis

Туре	Source	Uncertainty(%)
	PDF	4-5
	QCD scale variation (ZH)	7
Rate	QCD scale variation (VV)	7-10
	Luminosity	2.2-4.4
	Lepton Trigger, Reco., Iso.	3
	$Z/\gamma * \rightarrow \ell \ell$ normalization	100
	Top, WW, W+jets normalization	25-100
	MC statistics ZH,ZZ,WZ	1-5
	Control sample statistics $Z/\gamma * \rightarrow \ell \ell$	12-24
Shape	Control sample statistics NRB	53-100
and	Pile-up	0.1-0.3
Rate	b-tagging Efficiency	0.2
	Lepton Momentum Scale	1
	Jet Energy Scale, Resolution	1-3
	Unclustered energy	1-4

Combined relative signal efficiency uncertainty 12%

- Theoretical uncertainty
- PDF uncertainties
- Total relative uncertainty on background estimation 15%
 - Theoretical uncertainty (ZZ,WZ)

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Experimental Apparatus The CMS Detector Intro To Invisible Higgs Boson Invisible Higgs and ZZ Production Samples and Modeling Monte Carlo and DataSets The Search Strategy Utilizing Missing Energy Event Selection Background Estimation with Data Uncertainties Systematics Results Final Yields Limit Results

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	00		

Final Yields

Final Yields of ZH Analysis

	$\sqrt{s} = 7$ TeV		$\sqrt{s} = 8 \text{ TeV}$		
Process	ee	$\mu\mu$	ee	$\mu\mu$	
$ZH(m_H = 125 \text{ GeV})$	2.2 ± 0.3	3.3 ± 0.5	11.8 ± 1.9	16.7 ± 2.5	
$Z/\gamma * ightarrow \ell^+ \ell^-$	0.3 ± 0.3	0.7 ± 0.7	1.0 ± 1.0	1.9 ± 1.9	
Top/WW/W + jets	$\textbf{0.4}\pm\textbf{0.4}$	0.6 ± 0.6	1.3 ± 0.8	2.1 ± 1.3	
$W\!Z ightarrow 3\ell u$	2.0 ± 0.3	2.3 ± 0.3	11.0 ± 1.6	14.8 ± 2.1	
$ZZ ightarrow \ell^+ \ell^- u ar u$	5.1 ± 0.6	$\textbf{7.3}\pm\textbf{0.8}$	29.8 ± 3.6	40.8 ± 4.5	
total bkgd	$\textbf{7.8} \pm \textbf{0.8}$	11.0 ± 1.3	43.1 ± 4.1	59.6 ± 5.5	
Data	10	11	33	45	

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	○ ●O		

Limit Results

Shape Analysis for Invisible Higgs

$$\blacktriangleright m_T^2 = \left(\sqrt{p_T^{\ell\ell^2} + m_{\ell\ell^2}} + \sqrt{\not\!\!\!E_T^2 + m_{\ell\ell^2}}\right)^2 - \left(\overrightarrow{p_T^{\ell\ell}} + \overrightarrow{\not\!\!E_T}\right)^2$$

- Exploit differences in kinematics
 - $ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ and $ZH \rightarrow \ell^+ \ell^- + H(inv)$ both have missing energy, but mass of missing particle is different
- Shape used for all Higgs masses

105, 115, 125, 135, 145 GeV

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	○ ○●		

Limit Results

Limits on Invisible Higgs Decay

- Upper limit on $BR(H \rightarrow \text{invisible})$
 - Assume SM production rate
- Use modified frequentist construction CL_s
- Use Shape of Transverse Mass of Z and H

- For Higgs with $m_H = 125 \text{ GeV}$
 - Observed 95% C.L. upper limit 75%
 - Expected 95% C.L. upper limit 91%

m_H (GeV)	105	115	125	135	145
Obs Lim(%)	60	63	75	82	85
Exp Lim(%)	73	79	91	97	105

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Experimental Apparatus The CMS Detector Intro To Invisible Higgs Boson Invisible Higgs and ZZ Production Samples and Modeling Monte Carlo and DataSets The Search Strategy Utilizing Missing Energy Event Selection Background Estimation with Data Uncertainties Systematics Results Final Yields Limit Results Conclusion

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

Conclusions and looking forward.

Set limits on invisible higgs branching fraction for SM-range masses

• $m_H = 105$ GeV: Observed limit: = 60%, Expected limit: = 73%

▶ $m_H = 115$ GeV: Observed limit: = 63%, Expected limit: = 79%

• $m_H = 125$ GeV: Observed limit: = 75%, Expected limit: = 91%

•
$$m_H = 135$$
 GeV: Observed limit: = 82%, Expected limit: = 97%

▶ $m_H = 145$ GeV: Observed limit: = 85%, Expected limit: = 105%

- Comparable results to CMS and ATLAS indirect and direct searches (7)
 (8) (9)
- Continue analysis to explore Higgs masses beyond 150 GeV
- CMS-PAS-HIG-13-018 (10)

Experimental Apparatus	Intro To Invisible Higgs Boson	Samples and Modeling	The Search Strategy	Uncertainties	Results	Conclusion	References
0	00	0	0 000 00	0	000		

References

- [1] J. Beringer et al. Review of Particle Physics (RPP). Phys. Rev., D86:010001, 2012. doi:10.1103/PhysRevD.86.010001.
- [2] Gian F. Giudice, Riccardo Rattazzi, and James D. Wells. Graviscalars from higher dimensional metrics and curvature Higgs mixing. Nucl. Phys., B595:250-276, 2001. arXiv:hep-ph/0002178, doi:10.1016/S0550-3213(00)00686-6.
- [3] M. Battaglia, D. Dominici, J.F. Gunion, and J.D. Wells. The Invisible Higgs decay width in the add model at the LHC. 2004. arXiv:hep-ph/0402062.
- Jyong-Hao Chen, Xiao-Gang He, Jusak Tandean, and Lu-Hsing Tsai. Effect on higgs boson decays from large light-heavy neutrino mixing in seesaw models. Phys. Rev. D, 81:113004, 2010. doi:10.1103/PhysRevD.81.113004.
- [5] LHC Higgs Cross Section Working Group. 2013. Available from: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.
- [6] V. M. Abazov et. al. ZZ → I⁺I[−]νν̄ production in pp̄ collisions at √s = 1.96 TeV. Phys. Rev. D, 78:072002, 2008. doi:10.1103/PhysRevD.78.072002.
- [7] CMS Collaboration. Combination of standard model higgs boson searches and measurements of the properties of the new boson with a mass near 125 gev. CMS Physics Analysis Summary, CMS-PAS-HIG-13-005, 2013. Available from: http://cms.cern.ch/iCMS/analysisadmin/get?analysis=HIG-13-005-pas.pdf.
- [8] ATLAS Collaboration. Combined coupling measurements of the higgs-like boson with the atlas detector using up to 25 fb 1 of proton-proton collision data. ATLAS NOTE, ATLAS-CONF-2013-034, 2013. Available from: http://cds.cern.ch/record/1528170.
- [9] ATLAS Collaboration. Search for invisible decays of a higgs boson produced in association with a z boson in atlas. ATLAS NOTE, ATLAS-CONF-2013-011, 2013. Available from: http://cds.cern.ch/record/1523696.
- [10] CMS Collaboration. Search for invisible decays of a higgs produced in association with a z boson. CMS Physics Analysis Summary, CMS-PAS-HIG-13-018, 2013. Available from: http://cms-physics.web.cern.ch/cms-physics/public/HIG-13-018-pas.pdf.