Pulling Out All the Stops: Jet Substructure and Light Stops Decaying to Multijets

Brock Tweedie
Boston University
@ DPF 2013
15 August 2013

work in progress with Y. Bai and A. Katz
“Very Natural” SUSY

particle mass

other stuff
(heavy stop, EWinos, Higgsinos, gluino, other squarks, etc)

light stop
\(m \lesssim \text{TeV}\)

e.g., Brust, Katz, Lawrence, Sundrum (1111.6670)
• Baryonic R-parity violation
 – \(\lambda^{''}_{3ij} \bar{t}_R d_R^i d_R^j \) (\(i \neq j \))
• 100% decays to 2 down-type quarks
 – prompt if \(\lambda^{''} > 10^{-7} \)
 – MFV: 96% contain bottom
• Direct pair production \(\Rightarrow \) fully jetty final-state
 – no handles like leptons or MET

* LNV decays also being explored. See e.g. Evans & Kats (1209.0764)
Alternatives to Direct Production

- Produced in gluino decay (⇒ associated top pair)
 - dileptonic tops (possibly same-sign)
 - semileptonic tops (jet multiplicity, H_T tails, dijet resonance peak)
 - possibly high b-tag multiplicity (3 or 4)
- Produced in sbottom decay
 - extra leptonic handle from $\tilde{b} \rightarrow \tilde{t} W$
- Produced in heavier stop decay
 - not yet studied in detail
Pursuing Direct Production

- Much less model-dependent
 - rate and kinematics are only a function of stop mass
 - we will even ignore jet flavor (structure of λ'' coupling)...for now
 - not necessarily SUSY (generic diquark pair search)
- A benchmark for purely jetty searches
- Current limits are very weak
 - LEP: 90 GeV
 - Tevatron: 100 GeV
 - LHC: No limit!!
Trigger Creep at the LHC

Alleviated by parked data. See also b-jet-triggered analysis proposed in Franceschini & Torre (1212.3622)
Why Jet Substructure?

- Focus on high-pT “boosted” signal production
 - combinatoric ambiguities automatically resolved by ΔR
 - generally better S/B (e.g., less $gg\rightarrow gggg$)
- Flexible partition of decay radiation to individual “quarks”
 - better rejection of uncorrelated radiation (pileup, ISR, UE)
 - better signal mass resolution
- Nearly scale-free procedure
 - bypasses conventional “4-jet” division of highly multibody hadronic phase space, not sensitive to 4-jet trigger thresholds
 - background processed into ~featureless spectrum
Basic Ingredients

- Select events with jet-H_T trigger: offline $H_T > 900$
 - not very correlated with decay/shower kinematics
 - selects boosted stops for $m(\text{stop}) < 450$
- Pre-trim entire event to remove pileup
 - *Fixed* minijet p_T threshold, tuned to remove $\langle N_{\text{PV}} \rangle = 20 \ p_T$-density
- Capture stop decays in $R = 1.5$ C/A jets
- Decluster into subjets using BDRS-like prescription
 - halt declustering when subjet p_T's are not too asymmetric *and*
 neither has large m/p_T
 - original BDRS appears to give a biased QCD spectrum
- Impose kinematic cuts, and run a bump-hunt
 - lots of options for how to estimate the QCD continuum background
Example Event, $m(\text{stop}) = 100$

events gridified to 0.1x0.1
Cuts

- $H_T(\text{normal-jets}) > 900$
- declustered-jet mass asymmetry < 0.1
- CM $\cos(\Theta^*) < 0.3$
- $p_T(\text{softer-subjet}) / p_T(\text{harder-subjet}) > 0.3$
 - applied to each side independently
Average-Mass Spectra

Untagged

- W+jets
- tops
- QCD
- 100 GeV
- 200 GeV
- 300 GeV

At least 1 b-tag
(assuming ~100% BR to bd/bs)

- W+jets
- tops
- QCD
- 100 GeV
- 200 GeV
- 300 GeV

Be careful of top background!
A common strategy is to fit QCD with

\[
\frac{d\sigma}{dm_{\text{avg}}} = \frac{P_0(1 - m_{\text{avg}}/\sqrt{s})^P_1}{(m_{\text{avg}}/\sqrt{s})^{P_2 + P_3 \ln(m_{\text{avg}}/\sqrt{s})}}
\]

(but there are other ways...)

\[\text{(S+B)/B relative to stat errors)}\]
Summary

• SUSY may be hiding in plain sight!
 – $O(100 \text{ GeV})$ stop LSP is quite “natural”
 – fully jetty RPV decay is very difficult to spot

• Current LHC searches are not sensitive
 – multijet triggers make life difficult for $m(\text{stop}) \sim 100 \text{ GeV}$

• Jet substructure approach is extremely promising
 – focus on boosted stop pair production
 – big R \Rightarrow broad mass range covered
 – $> 5\sigma$ sensitivity to 100 GeV in 2012
 – untagged exclusion up to almost 300 GeV
 – even better if stop decays to b-quarks

• This is an analysis that can be done now
Extras
ΔR Distributions

*Passing all basic cuts