Properties of a Higgs-like particle of mass 125 GeV

Savanna Shaw

Michigan State University

On behalf of the $\mathsf{D}\ensuremath{\emptyset}$ collaboration

August 16, 2013

- Introduction/Motivation
 - The Higgs
 - The Tevatron
- DØ Higgs results
 - Cross Section
- Tevatron Higgs results
 - Cross Section
 - Couplings
- Higgs Spin and Parity in $VH \to V b \bar{b}$
- Summary

- July 2012 was an exciting time for particle physics!
- LHC experiments discovered new particle at 125 GeV in $\gamma\gamma$ and ZZ $\to 4\ell$ final states consistent with SM Higgs
- Tevatron provided 3σ evidence of particle in $b\bar{b}$ final state, also consistent with SM Higgs
- Focus now is shifting to measure this new particle's properties

- Primary search modes at LHC: $H \rightarrow ZZ$, $H \rightarrow \gamma\gamma$, $H \rightarrow WW$
- Primary search modes at the Tevatron: $VH \rightarrow Vbb$, $H \rightarrow WW$.

The Tevatron was a $p\bar{p}$ collider operating at \sqrt{s} =1.96 TeV.

• General strategy:

- Select events based on final state topology
- Categorize events
- Separate signal from background using multivariate techniques
- Perform statistical analysis

- Require large missing transverse energy and two jets
- Includes contribution from $WH \rightarrow \ell \nu bb$, where the lepton was not identified
- Dedicated MVA to reject multijet background

Savanna Shaw (MSU/DØ)

- Require exactly one lepton (e or µ), missing transverse energy and two or three jets
- Dedicated MVA to reject multijet background

Higgs Properties DPF 2013

- Require two isolated charged leptons (e or μ), and at least two jets
- Able to fully reconstruct final state
- Dedicated MVA to reject $t\bar{t}$ background

August 16, 2013 7 / 23

- Tag events coming from decay of a B meson
 - Use secondary vertex and tracking information to build an MVA to separate out light jets from b-jets.

Multivariate Analysis Example: $ZH \rightarrow \ell \ell bb$

• Separate signal from specific backgrounds, or all backgrounds together.

Combining all DØ Higgs searches

- Combine searches in $H \rightarrow bb$, $H \rightarrow WW$, $H \rightarrow \gamma\gamma$, $H \rightarrow \tau\tau$
- Observe a broad excess over background only prediction

Combining all Tevatron Higgs searches

- Combine DØ and CDF Higgs searches
- Observe a broad excess over background only prediction

Best Fit Cross Section

Higgs Decay Mode	$\frac{(\sigma \times BR)}{(\sigma \times BR)_{SM}}$
Combined	$1.40^{+0.92}_{-0.88}$
$H \to \gamma \gamma$	$4.20^{+4.60}_{-4.20}$
$H \to W^+ W^-$	$1.90^{+1.63}_{-1.52}$
$H \to \tau^+ \tau^-$	$3.96^{+4.11}_{-3.38}$
$H \to b\bar{b}$	$1.23^{+1.24}_{-1.17}$

Higgs Decay Mode	$\frac{(\sigma \times BR)}{(\sigma \times BR)_{SM}}$
Combined	$1.44_{-0.56}^{+0.59}$
$H \to \gamma \gamma$	$5.97^{+3.39}_{-3.12}$
$H \to W^+ W^-$	$0.94\substack{+0.85\\-0.83}$
$H \to \tau^+ \tau^-$	$1.68^{+2.28}_{-1.68}$
$H \to b\bar{b}$	$1.59^{+0.69}_{-0.72}$

- Introduce multiplicative scaling factors on Higgs coupling to fermions, W bosons, Z bosons, and general vector bosons: κ_f , κ_W , κ_Z , κ_V
 - Search for deviations from SM expectation of $\boldsymbol{1}$
- Also measure the ratio $\lambda_{WZ} = \kappa_W/\kappa_Z$
 - For custodial symmetry to hold $\lambda_{WZ}=1$

κ_f = -2.64^{+1.59}_{-1.30}
 Negative sign from excess in H → γγ (Γ_{γγ} ∝ |1.28κ_V - 0.28κ_f|²)
 λ_{WZ} = 1.24^{+2.34}_{-0.42}

(a)
$$\kappa_W \text{ vs } \kappa_Z$$

• $(\kappa_W, \kappa_Z) = (1.25, \pm 0.90)$
• $(\kappa_f, \kappa_V) = (1.05, -2.04)$

(b) κ_f vs κ_V

- The Standard model Higgs is predicted to have $J^P{=}0^+$
- Could have non-SM scenarios with $J^P = 0^-$, 2^+ .
- LHC experiments studying spin and parity in bosonic final states
- Tevatron experiments sensitive to $b\bar{b}$ final state.

- K
- Total visible mass of the Vbb system shows good separating power between different J^P assignments
 - J. Ellis, D. S. Hwang, V. Sanz and T. You, "A Fast Track towards the 'Higgs' Spin and Parity," JHEP **1211**, 134 (2012)
 - arXiv:1208.6002 [hep-ph].

- Non-SM signals generated with MADGRAPH5, then interfaced with PYTHIA for showering
- Will only be considering $2^+ \mbox{ vs } 0^+ \mbox{ today (work on } 0^- \mbox{ result is ongoing)}$
 - 2^+ signal is generated using Randall-Sundrum graviton model
- After full reconstruction and detector simulation, we see good separation as predicted

- Can use the knowledge of mass to split our samples into regions of high and low signal purity
- ZH \rightarrow Zbb analyses split into regions based on dijet mass, while WH \rightarrow Wbb analysis split based on MVA output

🔊 Statistical Analysis

- Use LLR as a test statistic: $LLR = -2\log(\frac{H_1}{H_0})$
 - $H_0 = 0^+ + \text{background}$
 - $H_1 = 2^+ + \text{background}$
- Do computation under two different assumptions:
 - $\sigma \times BR = 1.0 \text{ SM}$
 - $\sigma \times BR = 1.23$ SM (best cross section fit value)
 - $\mu = \frac{\sigma}{\sigma_{SM}}$

- To quantify model preference, use $CL_S = \frac{CL_{H_1}}{CL_{H_0}}$
 - $CL_X = \mathsf{P}(\mathsf{LLR} \ge \mathsf{LLL}^{observed} | \mathsf{X}).$
- Can interpret 1- CL_S as the confidence level for exclusion of 2^+ model in favour of 0^+ model.

	$1-CL_S$
$\mu = 1.00$, Expected	0.9995
$\mu = 1.00$, Observed	0.992
$\mu = 1.23$, Expected	0.9999
$\mu = 1.23$, Observed	0.999

- Tevatron sees broad excess in data that is consistent with SM Higgs boson
- Tevatron primarily sensitive to ${\rm H}{\rightarrow}~b\bar{b},$ provides information complimentary to LHC H ${\rightarrow}{\rm bosons}$
- Prefer $J^P=0^+$ over 2^+ , and reject 2^+ (with graviton like couplings) at >99.2% confidence level in $VH \to Vb\bar{b}$
- Spin and parity studies on 0^- in $VH \rightarrow Vb\bar{b}$ coming soon!

For more information:

- Tevatron New Phenomena and Higgs Working Group:
 - http://tevnphwg.fnal.gov/
- DØ Higgs results:
 - http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm

