Properties of a Higgs-like particle of mass 125 GeV

Savanna Shaw

Michigan State University

On behalf of the DØ collaboration

August 16, 2013
Overview

- Introduction/Motivation
 - The Higgs
 - The Tevatron
- DØ Higgs results
 - Cross Section
- Tevatron Higgs results
 - Cross Section
 - Couplings
- Higgs Spin and Parity in \(VH \rightarrow Vb\bar{b} \)
- Summary
• July 2012 was an exciting time for particle physics!
• LHC experiments discovered new particle at 125 GeV in $\gamma\gamma$ and $ZZ \rightarrow 4\ell$ final states consistent with SM Higgs
• Tevatron provided 3σ evidence of particle in $b\bar{b}$ final state, also consistent with SM Higgs
• Focus now is shifting to measure this new particle’s properties
The Higgs at the Tevatron

- Primary search modes at LHC:
 \(H \rightarrow ZZ, \ H \rightarrow \gamma\gamma, \ H \rightarrow WW \)

- Primary search modes at the Tevatron:
 \(VH \rightarrow Vbb, \ H \rightarrow WW \).

![Graph showing branching ratios for different decay modes of the Higgs boson.](image)
The Tevatron was a $p\bar{p}$ collider operating at $\sqrt{s} = 1.96$ TeV.
• General strategy:
 • Select events based on final state topology
 • Categorize events
 • Separate signal from background using multivariate techniques
 • Perform statistical analysis
Example: \(VH \rightarrow Vbb \)

- Require large missing transverse energy and two jets
- Includes contribution from \(WH \rightarrow ℓνbb \), where the lepton was not identified
- Dedicated MVA to reject multijet background

- Require exactly one lepton (\(e \) or \(µ \)), missing transverse energy and two or three jets
- Dedicated MVA to reject multijet background

- Require two isolated charged leptons (\(e \) or \(µ \)), and at least two jets
- Able to fully reconstruct final state
- Dedicated MVA to reject \(t\bar{t} \) background
Classifying events: b-tagging

- Tag events coming from decay of a B meson
 - Use secondary vertex and tracking information to build an MVA to separate out light jets from b-jets.
Separate signal from specific backgrounds, or all backgrounds together.

- **Multivariate Analysis Example: ZH→ℓℓbb**

- **RF Output**

- **Events / 0.05 Data**
 - Z+LF
 - Z+b\bar{b}
 - Z+c\bar{c}
 - Top
 - Diboson
 - Multijet

- **ZH x 40 = 125 GeV Higgs**

- **RF < 0.5t**
 - **Double Tag**
 - DØ, 9.7 fb⁻¹

- **Events / 0.05 Global RF Output**

- **tt̄ RF < 0.5**

- **tt̄ RF ≥ 0.5**

- **tt̄ enriched**

- **tt̄ depleted**
Combining all DØ Higgs searches

- Combine searches in $H \rightarrow bb$, $H \rightarrow WW$, $H \rightarrow \gamma\gamma$, $H \rightarrow \tau\tau$
- Observe a broad excess over background only prediction

![Graph showing SM Higgs Combination](image-url)
Combining all Tevatron Higgs searches

- Combine DØ and CDF Higgs searches
- Observe a broad excess over background only prediction
Best Fit Cross Section

Higgs Decay Mode

<table>
<thead>
<tr>
<th>Higgs Decay Mode</th>
<th>$\frac{(\sigma \times BR)}{(\sigma \times BR)_{SM}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>$1.40^{+0.92}_{-0.88}$</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>$4.20^{+4.60}_{-4.20}$</td>
</tr>
<tr>
<td>$H \rightarrow W^{+}W^{-}$</td>
<td>$1.90^{+1.63}_{-1.52}$</td>
</tr>
<tr>
<td>$H \rightarrow \tau^{+}\tau^{-}$</td>
<td>$3.96^{+4.11}_{-3.38}$</td>
</tr>
<tr>
<td>$H \rightarrow b\bar{b}$</td>
<td>$1.23^{+1.24}_{-1.17}$</td>
</tr>
</tbody>
</table>

Higgs Properties DPF 2013

<table>
<thead>
<tr>
<th>Higgs Decay Mode</th>
<th>$\frac{(\sigma \times BR)}{(\sigma \times BR)_{SM}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>$1.44^{+0.59}_{-0.56}$</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>$5.97^{+3.39}_{-3.12}$</td>
</tr>
<tr>
<td>$H \rightarrow W^{+}W^{-}$</td>
<td>$0.94^{+0.85}_{-0.83}$</td>
</tr>
<tr>
<td>$H \rightarrow \tau^{+}\tau^{-}$</td>
<td>$1.68^{+2.28}_{-1.68}$</td>
</tr>
<tr>
<td>$H \rightarrow b\bar{b}$</td>
<td>$1.59^{+0.69}_{-0.72}$</td>
</tr>
</tbody>
</table>
• Introduce multiplicative scaling factors on Higgs coupling to fermions, W bosons, Z bosons, and general vector bosons: $\kappa_f, \kappa_W, \kappa_Z, \kappa_V$
 • Search for deviations from SM expectation of 1
• Also measure the ratio $\lambda_{WZ} = \kappa_W / \kappa_Z$
 • For custodial symmetry to hold $\lambda_{WZ} = 1$
Couplins 1-D

(a) κ_f

- $\kappa_f = -2.64^{+1.59}_{-1.30}$
 - Negative sign from excess in $H \rightarrow \gamma\gamma$ ($\Gamma_{\gamma\gamma} \propto |1.28\kappa_V - 0.28\kappa_f|^2$)

- $\lambda_{WZ} = 1.24^{+2.34}_{-0.42}$
Couplings 2-D

(a) κ_W vs κ_Z

- $(\kappa_W, \kappa_Z) = (1.25, \pm 0.90)$
- $(\kappa_f, \kappa_V) = (1.05, -2.04)$

(b) κ_f vs κ_V
• The Standard model Higgs is predicted to have $J^P = 0^+$
• Could have non-SM scenarios with $J^P = 0^-, 2^+$.
• LHC experiments studying spin and parity in bosonic final states
• Tevatron experiments sensitive to $b\bar{b}$ final state.
• Total visible mass of the Vbb system shows good separating power between different J^P assignments
 • arXiv:1208.6002 [hep-ph].
Signal Generation

- Non-SM signals generated with MADGRAPH5, then interfaced with PYTHIA for showering
- Will only be considering $2^+ \text{ vs } 0^+$ today (work on 0^- result is ongoing)
 - 2^+ signal is generated using Randall-Sundrum graviton model
- After full reconstruction and detector simulation, we see good separation as predicted

(a) $ZH \to \ell\ell bb$

(b) $ZH \to \nu\nu bb$
Discriminating Further

- Can use the knowledge of mass to split our samples into regions of high and low signal purity
- ZH→Zbb analyses split into regions based on dijet mass, while WH→Wbb analysis split based on MVA output
Final Variable

(a) $ZH \rightarrow \nu \nu bb$

(b) $WH \rightarrow \ell \nu bb$

(c) $ZH \rightarrow \ell \ell bb$
Statistical Analysis

- Use LLR as a test statistic: \(LLR = -2 \log \left(\frac{H_1}{H_0} \right) \)
 - \(H_0 = 0^+ + \text{background} \)
 - \(H_1 = 2^+ + \text{background} \)
- Do computation under two different assumptions:
 - \(\sigma \times \text{BR} = 1.0 \) SM
 - \(\sigma \times \text{BR} = 1.23 \) SM (best cross section fit value)
 - \(\mu = \frac{\sigma}{\sigma_{SM}} \)

(a) \(\mu = 1.00 \)

(b) \(\mu = 1.23 \)
To quantify model preference, use \(CL_S = \frac{CL_{H_1}}{CL_{H_0}} \)

- \(CL_X = P(\text{LLR} \geq \text{LLL}^{\text{observed}} | X) \).
- Can interpret \(1-CL_S \) as the confidence level for exclusion of \(2^+ \) model in favour of \(0^+ \) model.

\(\mu = 1.00 \), Expected	0.9995
\(\mu = 1.00 \), Observed	0.992
\(\mu = 1.23 \), Expected	0.9999
\(\mu = 1.23 \), Observed	0.999
Summary

- Tevatron sees broad excess in data that is consistent with SM Higgs boson.
- Tevatron primarily sensitive to $H \rightarrow b \bar{b}$, provides information complimentary to LHC $H \rightarrow$ bosons.
- Prefer $J^P = 0^+$ over 2^+, and reject 2^+ (with graviton like couplings) at $> 99.2\%$ confidence level in $VH \rightarrow Vb\bar{b}$.
- Spin and parity studies on 0^- in $VH \rightarrow Vb\bar{b}$ coming soon!
For more information:

- Tevatron New Phenomena and Higgs Working Group:
 - http://tevnphwg.fnal.gov/

- DØ Higgs results:
 - http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm
Run II Integrated Luminosity

19 April 2002 - 30 September 2011

Delivered
Recorded

Luminosity (fb⁻¹)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Apr-02 Apr-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Apr-09 Apr-10 Apr-11

Delivered
Recorded

11.9
10.7
Background p-values

(a) DØ

(b) Tevatron
$H \rightarrow bb$

(a) D0

(b) Tevatron
H → WW

(a) D0

DØ, \(L_{\text{int}} \leq 9.7 \text{ fb}^{-1} \)

SM \(H \to W^+W^- \) Combination

(b) Tevatron

Tevatron Run II, \(L_{\text{int}} \leq 10 \text{ fb}^{-1} \)

SM \(H \to WW \) Combination

\(m_H (\text{GeV}/c^2) \)

Log-Likelihood Ratio

9.7 fb \(\leq \text{int} \ DØ, \ L_{\text{int}} \leq 9.7 \text{ fb}^{-1} \)

Combination

125 GeV/c²

Savanna Shaw (MSU/DØ)
95 % C.L. Limits

(a) D0

(b) Tevatron

DØ, $L_{int} \leq 9.7 \text{ fb}^{-1}$

SM Higgs Combination

95% C.L. Limit on σ_H / σ_{SM}

M_H (GeV)

Expected if $m_H=125$ GeV

Expected ± 1 s.d.

Expected ± 2 s.d.

DØ Exclusion

Tevatron Run II, $L_{int} \leq 10 \text{ fb}^{-1}$

SM Higgs combination

Observed

Expected w/o Higgs

Expected w/$m_H=125$ GeV

Expected ± 1 s.d.

Expected ± 2 s.d.

Expected if $m_H=125$ GeV

95% C.L. Limit/SM

M_H (GeV/c2)
Couplings

(a) κ_W

(b) κ_Z