Measurements of the Associated Production of a Vector Boson with Jets at D0

Ashish Kumar

on behalf of the D0 Collaboration

DPF 2013 Meeting, UC Santa Cruz, 08/15/2013

Outline

- Motivation
- The DØ Detector
- Measurement Strategy
- Results
 - ⇒ W + jets
 - $\Rightarrow \gamma + jets$
 - ⇒ W + b jets
 - ⇒ Z + b/c jets
 - $\Rightarrow \gamma + b/c jets$
- Conclusions

Motivation

- Test of pQCD calculations
 - Recent high jet multiplicity calculations available
 - 5FNS and 4FNS schemes
 - Novel techniques: NLO + Parton Shower merging
- Validation of simulation models
 - Novel techniques for matching Matrix Elements with Parton Shower
- Sensitive to heavy flavor content of the proton
- Backgrounds for variety of precision SM measurements and searches for new physics Top quark properties Study of Higgs Boson SUSY searches (e.g. sbottom)

Data Sample

⇒ Results presented based on proton-antiproton collision data at \sqrt{s} =1.96 TeV with integrated luminosity of 6.1 – 9.7 fb⁻¹

Recent Boson plus Jet Measurements by D0

$$\Rightarrow \gamma + \text{jet}$$
 8.7 fb-1 arXiv:1308.2708

$$\uparrow$$
 +b-jet 8.7 fb-1 PLB 714, 32 (2012)

$$\uparrow$$
 +c-jet 8.7 fb-1 PLB 719, 354 (2013)

$p\bar{p} \to \gamma + \mathrm{jet} + X$

- ightharpoonup Measurement of $d^3\sigma / dp_T^{\gamma} dy^{\gamma} dy^{jet}$ for
 - Central photons: |y^y| < 1.0</p>
 - \Rightarrow Forward photons: 1.5< $|y^{\gamma}|$ < 2.5
 - 4 jet rapidity intervals

$$|y^{\text{jet}}| \le 0.8$$

$$0.8 < |y^{jet}| \le 1.6$$

$$1.6 < |y^{jet}| \le 2.4$$

$$2.4 < |y^{jet}| \le 3.2$$

- Configurations with same sign (y^vy^{jet}≥0) and opposite sign (y^vy^{jet}<0) events</p>
- **⇒** These regions probe different ranges of x and Q²
 - varying contribution from gluoninitiated Compton process
 - different levels of fragmentation contribution

arXiv:1308.2708

$par p o \gamma \! + \! \mathrm{jet} \! + \! X$

arXiv:1308.2708

Central Photons

- NLO predictions describe data in almost all rapidity regions with some exceptions
 - ⇒ p_T^γ< 40 GeV for central photons</p>
- Typical uncertainties similar or smaller than PDF + scale uncertainties

Forward Photons

W + Jets Measurements

arXiv:1302.6508

- Comprehensive study of W+n-jet production (n=1 4)
 - Measurements of 40 observables
 - Uncertainties smaller or similar compared to theoretical ones
 - Comparison with recent NLO calculations and MCs (PS, ME+PS)
 - Validation of new theoretical approaches and MC tuning

- Measurement of the nth-jet rapidity distribution
 - Tests the modeling of parton emission
 - All predictions largely agree in shape at central rapidities

W+Jets Measurements

arXiv:1302.6508

- Dependence of mean no of jets in an event on total transverse energy of the hard interaction tested for the first time

 - NLO describes <N_{jet}> spectrum over entire H_T range
 ⇒ Both PS and ME+PS underestimate amount of high p_T jet emission

Heavy Flavor (HF) Jet Tagging

- Long lifetime (~1 ps) of b/c hadrons resulting in displaced secondary vertex.
- Large hadron masses 2-5 GeV
 - Tracks displaced from primary vertex with large impact parameters
- ➡ HF tagging exploits characteristics of the tracks to create a discriminant
 - Typically 50-60% efficient for 0.5-1.5% fake rate

Estimation of Heavy Flavor Fraction

- The tagged sample still has some fraction of misidentified jets
- **⇒** To further separate jets of different flavors, use a discriminant
 - M_{SVT} is invariant mass of tracks associated to secondary vertex
 - **⇒** JLIP is jet lifetime impact parameter

$$D_{\rm MJL} = \frac{M_{\rm svt}/5 - \ln(\rm JLIP)/20}{2}$$

- ⇒ Fit background subtracted data distribution with the templates to extract the jet flavor fractions
 - ⇒ For c-jet fraction, fitting with three templates return large uncertainties
 - ⇒ Fit data with b- and c-jet templates after subtracting the residual contribution of light jets

PLB 714, 32 (2012)

PLB 714, 32 (2012)

- ⇒ Reasonable description within uncertainties at low p_T^γ < 70 GeV
 </p>
- Disagreements (difference in slopes) at higher p_T^γ
 - Need for higher order corrections at large p_T dominated by annihilation process, and resummation of diagrams with additional gluon radiation.
- ⇒ Better description by SHERPA and k_T-factorization approach

W + b-jet(s)

⇒ W(→Iv) selection

- ⇒ Isolated lepton p_T > 20 GeV
- **1** Muon: $|\eta|^{\mu}$ | < 1.7
- Electron: | η e | < 1.1
 or 1.5 < | η e | < 2.5
- ➡ Missing E_T > 25 GeV
- Jet selection
 - \Rightarrow 21 jet, R=0.5
 - \Rightarrow p_T > 20 GeV, | η | < 1.1

$$\sigma(W+b)\cdot\mathcal{B}(W\to\ell\nu) = \frac{N_{W+b}}{\mathcal{L}\cdot\mathcal{A}\cdot\epsilon}$$

PLB 718, 1314 (2013)

	W→μν	W→ev
Data – Bkg	4127	6255
W+b frac.	0.30 ± 0.04	0.27 ± 0.03

=
$$1.05 \pm 0.03$$
 (stat.) ± 0.12 (syst.) pb
= $1.34^{+0.41}_{-0.34}$ (MCFM NLO)

Measurement consistent with NLO prediction within uncertainties

σ (Z + b) $I\sigma$ (Z + jets)

- **⊃** $Z(\rightarrow ee I \mu \mu)$ selection
 - Missing E_T < 60 GeV</p>
- Jet selection
 - ⇒ 21 jet
 - \Rightarrow p_T > 20 GeV, | η | < 2.5
- Measurement of ratio allows for precise comparison with theory

$$\frac{\sigma(Z+b \text{ jet})}{\sigma(Z+\text{ jet})} = \frac{N_{fitted} f_b}{N_{Z+j} \varepsilon_{btag}^b} \times \frac{A_{incl}}{A_b}$$

Phys. Rev. D 87, 092010 (2013)

	Z→µµ	Z →ee
Data – Bkg	3,921	3,576
Z+b %	21.5 ± 1.6	19.8 ± 1.9

D0 0.0196 ± 0.0012 (stat.) ± 0.0013 (syst.) CDF 0.0208 ± 0.0018 (stat) ± 0.0027 (syst.)

MCFM [MSTW2008, $M_Z^2+\Sigma(\text{jet }p_T)^2$]

 $0.0206^{+0.0022}_{-0.0013}$

σ (Z+b jet) / σ (Z + jets)

First measurement of the ratio differentially as a function of kinematic observables

γ + c-jet(s)

PLB 719, 354 (2013)

- ⇒ Reasonable description within uncertainties at low p_T^γ < 70 GeV
 </p>
- Systematic disagreement at higher p_T^γ
 - Need for HO corrections at large p_T[√] dominated by annihilation process, and resummation of diagrams with additional gluon radiation.
- Better description by SHERPA and k_T-factorization approach

$\sigma(\gamma+c)/\sigma(\gamma+b)$

PLB 719, 354 (2013)

- Measurement of ratio allows more precise comparison with theory
 - Cancellation of many systematic uncertainties
- p_T^γ <70 GeV: Good agreement with NLO, PYTHIA and SHERPA, while k_T-factorization predicts smaller ratios
- ⇒ p_T^γ >70 GeV: Data show systematically higher ratios
 - k_T-factorization tend to agree within uncertainties
 - ⇒ BHPS model with small shift in normalization should provide better description
 - Predictions with larger g→cc rates (~1.7) also provide better description

σ (Z + c) / σ (Z + jets)

- First measurement of the Z+c-jet production
- \bigcirc Z(→ee $I \mu \mu$) selection
- Jet selection
 - **⇒** ≥ 1 jet, p_T > 20 GeV, $|\eta|$ < 2.5

$$\frac{\sigma(Z + c \text{ jet})}{\sigma(Z + \text{jet})} = \frac{N_{fitted} f_c}{N_{Z+j}^{presel} \epsilon_{tag}^c} \times \frac{\mathcal{A}_{incl}}{\mathcal{A}_c}$$

D0 $0.0829 \pm 0.0052 \text{ (stat.)} \pm 0.0089 \text{ (syst.)}$

MCFM [MSTW2008, $M_z^2 + \Sigma (\text{jet p}_T)^2$ 0.0368 $^{+0.0063}_{-0.0039}$

MCFM [IC model, CTEQ6.6c] $0.0425^{+0.0048}_{-0.0029}$

Measurements significantly in excess of predictions

For 9.7 fb ⁻¹	ee + μ μ	
Data-bkg	2125	
Z+b jet	[51.4 ± 2.8] %	
Z+c jet	[48.6 ± 2.8] %	

σ (Z+c jet) / σ (Z+jet) Dependence

- Measurements significantly in excess of predictions
- ⇒ Predictions with enhanced g→cc rates provide better description

σ (Z+c jet) / σ (Z+b-jet)

$$\frac{\sigma(Z + c \text{ jet})}{\sigma(Z + b \text{ jet})} = \frac{f_c \epsilon_{tag}^b}{f_b \epsilon_{tag}^c} \times \frac{\mathcal{A}_b}{\mathcal{A}_c}$$

- Cancellation of many syst. uncert. in the ratio
- Allows for precise comparison with theory calculations

D0	4.00 ± 0.21 (stat.) ± 0.58 (syst.)		
MCFM [MSTW2008, M _Z ² MCFM [IC model, CTEQ6 ALPGEN SHERPA		1.64 2.23 1.57 2.19	

Measurements significantly in excess of predictions

Conclusions

- Vector boson + heavy flavor jet production provides a good laboratory for precision tests of pQCD and probes the heavy flavor content of the proton
- Understanding of these processes key for the New Phenomena searches
- Many interesting results from the D0 experiment
 - Extend the previously probed phase space
 - Test various predictions from theory and simulation
 - Important feedback for the theory development & MC tuning
- Compressive study of W+njet and photon+jet production
- Many new measurements on vector boson plus heavy flavor jets
 - **⇒** First measurement of Z+c-jet production
- More interesting measurements in the pipeline. Stay tuned.

Thank You!

Jets

- Reconstruction
 - Hadronic shower
 - Iterative mid-point cone algorithm, R = 0.5
- Jet Energy Scale
 - Measured in γ+jet and Dijet events
 - Correct energy to particle level
 - Correct for detector response, out of cone showering, overlap with pile up energy
- Correct parton-level theory for nonperturbative effects (hadronization and Underlying events) using parton shower Monte Carlo

W+Jets Measurements

arXiv:1302.6508

- Measurement of the probability of emission of 3rd jet in the inclusive W+2jet events as a function of
 - Dijet rapidity separation of two highest p_T jets
 - Dijet rapidity separation of two most rapidity-separated jets
 - Dijet rapidity separation of two highest p_T jets and the 3rd jet is emitted into the rapidity interval defined by the two leading jets

FIG. 8: (color online) Comparison of the same-sign to opposite-sign cross section ratios for events with a central central jet and those with a forward photon and very forward jet.