

DPF 2013 – Santa Cruz Search for SM Higgs boson in the four lepton channel with DØ detector using 9.8 fb⁻¹ of data

Diego Menezes, Northern Illinois University / NICADD

OUTLINE

- 1) The Standard Model
- 2) Higgs boson branching ratios
- 3) Higgs boson searches
- 4) $ZZ \rightarrow 4$ lepton analysis
- 5) Event selection
- 6) Cross section calculation
- 7) Higgs search and limits calculation
- 8) Conclusions

The Standard Model

- One of the greatest scientific achievements in History;
- Contains almost everything we know on particles and forces;
- Has its predictions successfully confirmed through decades of experiments: W & Z bosons, bottom and top quarks, gluons;
- Problems: gravity, too many parameters, hierarchy problem, matter-antimatter asymmetry, dark matter & dark energy;

Higgs boson is a fundamental piece of SM!

Higgs BR's

Higgs branching ratios as a function of the Higgs mass tell us which decays to expect and where:

<u>LEP Searches</u>

LEP performed Higgs searches in electron-positron collisions up to $\sqrt{s} = 209$ GeV.

Signal signatures were:

- * four jets, from $h \rightarrow b \overline{b} \& Z \rightarrow q \overline{q}$; * two taus and two jets, from $h \rightarrow b \overline{b} \& Z \rightarrow \tau^{-} \tau^{+}$ or $h \rightarrow \tau^{-} \tau^{+}$ $Z \rightarrow q \overline{q}$;
- * two jets and missing $\mathbf{E}_{\mathrm{T}(\mathrm{MET})}$, from $h \rightarrow b \,\overline{b} \quad \& Z \rightarrow v \,\overline{v}$ * two leptons and two jets, from $h \rightarrow b \,\overline{b} \quad \& Z \rightarrow l^- l^+$.

LEP did set a limit on Higgs masses at 95% confidence level of

 $\rm M_{_H}>114.4~GeV$

Tevatron Searches

Tevatron performed Higgs searches in proton-antiproton collisions up to $\sqrt{s} = 1.96$ TeV.

Collected ~ 10fb^{-1} of data up to shutdown in November 2011.

Hadron colliders provide a number of process that produce Higgs:

At the Tevatron, the main process involving Higgs were:

- * two b-jets, lepton plus missing \mathbf{E}_{T} (MET) from $p \,\overline{p} \to W^{\pm} H$ or $p \,\overline{p} \to ZH$
- * two b-jets and two leptons from $p \overline{p} \rightarrow ZH$
- * two taus from $h \rightarrow \tau^{-} \tau^{+}$
- * four isolated leptons from $p \overline{p} \rightarrow H \rightarrow ZZ \rightarrow 4$ leptons

Tevatron Searches

D0 and CDF collaborations excluded the 147 - 180 GeV & 100 - 103 GeV mass windows at 95% confidence level and found a 2.5σ excess of events between 115 and 135 GeV:

Next we will review searches at LHC and the discovery of a Higgs-like particle ~ 125 GeV on both experiments

LHC Searches

CMS and ATLAS searched for Higgs in proton-proton collisions up to $\sqrt{s} = 8$ TeV, having accumulated 5.3 and 5.8 fb⁻¹ each up to August 2012.

At the LHC, the main process involving Higgs are:

* two photons from $h \rightarrow \gamma \gamma$ * four leptons from $h \rightarrow ZZ$

* jets from weak vector boson fusion together with $h \rightarrow \tau^{-} \tau^{+}$, $h \rightarrow \gamma \gamma$ and $h \rightarrow WW$

8

LHC Searches

CMS and ATLAS reported last Summer a discovery of a Higgs-like particle $\sim 125 \text{ GeV}.$

CMS analyzed 5.1 and 5.3fb-1 at $\sqrt{s} = 7 \sqrt{s} = 8$ TeV respectively. The Higgs boson with mass of 125.4 \pm 0.4(stat) \pm 0.5(sys) GeV was found with a 5.8 σ significance:

ATLAS analyzed 4.8 and 5.8fb-1 at $\sqrt{s} = 7 \sqrt{s} = 8$ TeV respectively. The Higgs boson with mass of 126.0 $\pm 0.4(\text{stat}) \pm 0.4(\text{sys})$ GeV was found with a 5.9 σ significance:

D0 ZZ → 4 leptons analysis

- * One of the smallest cross sections in $p \overline{p} \rightarrow Z/\gamma Z/\gamma \rightarrow 4$ leptons SM;
- * Very pure signal and little background;
- * Opens door for $H \rightarrow ZZ$ search;
- * Results have been accepted for publication on PRD; 🙄

The analysis itself is divided into 3 final states: $ZZ \rightarrow 4e, ZZ \rightarrow 2e2\mu$ and $ZZ \rightarrow 4\mu$.

This 9.8fb⁻¹ analysis is an improved extension of previous 6.4fb⁻¹ one.

Event selection

Selection criteria used to enhance signal over background

* 4e final state broken into the number of electrons in the CC: 2, 3, 4 or 1 ICR electron.

* 2e2µ final state broken the same way: 0, 1 or 2 CC electrons.

$\begin{array}{l} \underline{4e \ final \ state:}\\ * \ at \ least \ 4 \ "good" \ electrons;\\ * \ all \ electron \ pT's \ > \ 15 \ GeV;\\ * \ number \ of \ electrons \ in \ the \ CC \ > \ 2;\\ * \ two \ lepton \ pairs \ invariant \ masses \ M_{_{II}} \ > \ 30 \ GeV \ and \ M_{_{II'}} \ > \ 30 \ GeV. \end{array}$

<u>2e2µ final state:</u>

- * at least two "good" non-ICD electrons & two "good" muons;
- * all electron and muons pT's > 15 GeV;
- * muons must be isolated;
- * $\cos(\alpha) < 0.96$ between the two muons;
- * acoplanarity between the two muons > 0.05;
- * $\Delta z_{\rm DCA} < 3.0$ cm between all muon tracks;
- * $\Delta R > 0.2$ between all electron-muon pairs;
- * two lepton pairs invariant masses $M_{_{\rm II}}>30~{
 m GeV}$ and $M_{_{\rm I'I'}}>30~{
 m GeV}.$

<u>4µ final state:</u>

- * at least four "good" muons;
- * all muons pT's > 15 GeV;
- * muons must be isolated;
- * $\Delta z_{\text{DCA}} < 3.0$ cm between all muon tracks;
- * $\Delta R > 0.2$ between all muon tracks;
- * Muon charges must have opposite sign;
- * invariant mass of best muon pair > 30 GeV.

Our trigger efficiency for signal is estimated to be close to 100%

Instrumental background

Main background is Z (\rightarrow ll) + jets and Z (\rightarrow ll) + γ + jets Need to determine the probability of a jet be misidentified as a lepton (P_{jl} or fake rate).

We use the tag-probe method: select a di-jet sample in data. The tag jet is the one with $p_T > 15$ GeV and fires a single-jet trigger; the other is the probe one.

Electron fake rate (P_{ie}): $\Delta \phi$ (probe,tag) > 3.0 - fills denominator

with probe jets $\Delta \phi(e,tag) > 3.0$ – fills numerator with electrons

We also apply MET < 20 GeV to suppress W + jets contamination

Both are $P_{jl} \sim 10^{-3}$

<u>4e final state Z + jets background:</u>

* apply $P_{i_{p}}$ to events with 3 electrons with pT > 15 GeV and 1 jet;

- * method accounts for $Z + \gamma + jets$ background;
- * overestimates events with 2 electrons and 2 jets misreconstructed as electrons. This contribution was found to be negligible;

<u> 4μ final state Z + jets background</u>:

* apply $P_{j\mu}$ to events with 2 isolated muons with pT > 15 GeV and 2 jets; * method accounts for Z + jets background;

<u> $2e2\mu$ final state Z + jets background:</u>

- * two different contributions: 2 muons + 1 electron + 1 jet and 2 electrons + 2 jets;
- * applying P_{je} to the jet estimates both $Z(\rightarrow \mu\mu) + jets$ and $Z(\rightarrow \mu\mu) + \gamma + jets$;
- * applying $\overline{P}_{j\mu}$ to the jet estimates $Z(\rightarrow ee) + jets$.

Other backgrounds must be noticed

* ttbar: small contribution in 2e2µ final state;

* beam halo and cosmic ray muon: beam halo interactions and cosmic rays muons can produce events with four lepton in the final state;

* migration/misreconstruction: lepton pairs coming from low mass Z/γ^* production. Wrong pairings (leptons wrongly assigned to Zs) can still pass selection cuts and end up as a signal. Affects 4e and 4µ.

After applying these selection criteria we end up with 15.31 signal events, 1.49 background events and 13 candidate events in the data sample.

final state	observed events	expected signal ZZ	QCD background	migration background	tt background	cosmic background
4e	5	4.12	0.61	0.09	0.00	0.00
4mu	3	4.26	0.12	0.03	0.00	< 0.01
2e2mu	5	6.93	0.59	0.01	0.04	< 0.01

Cross section calculation

To find the cross-section, we minimize the negative Log-likelihood:

 $\sigma(pp \rightarrow Z/\gamma^* Z/\gamma^*) = 1.26^{+0.44}_{-0.36}(stat.)^{+0.17}_{-0.15}(syst.) \pm 0.08(lumi) pb$ Using MCFM we correct for $\sigma(pp \rightarrow Z/\gamma^* Z/\gamma^*)/\sigma(pp \rightarrow ZZ)$, combine with ZZ \rightarrow llUU cross section to obtain: $\sigma(pp \rightarrow ZZ) = 1.32^{+0.29}_{-0.25}(stat.) \pm 0.12(syst.) \pm 0.04(lumi) pb$

In agreement with SM value of 1.43 pb

Higgs search and limits calculation

In Summer 2012 both D0 and CDF collaborations reported evidence of the Higgs boson. CMS and ATLAS reported its discovery with a mass of ~ 125 GeV.

Higgs search in the four lepton final state is the last piece of the Higgs program on D0. We perform such search here.

Two production mechanisms studied: $gg \rightarrow H \rightarrow ZZ \rightarrow 4$ leptons ZH production via $H \rightarrow \tau\tau$, $H \rightarrow WW$ and $H \rightarrow ZZ$ with subsequent decays to four leptons in the end.

Both simulated using PYTHIA.

Use the same method as in the pp \rightarrow ZZ cross section measurement: divide the analysis into 3 final states, 4e, 4µ and 2e2µ and apply the same selection criteria.

Higgs search yields

$M_{_{\rm H}} = 125$ GeV yields in all final state channels:

channel	yield		
ZH 4e, 4CCnoICR	0.010		
ZH 4e, 3CCnoICR	0.006		
ZH 4e, 2CCnoICR	0.003		
ZH 4e, 1ICR	0.008		
ZH 4µ	0.033		
ZH 2e2µ, 0CC	0.001		
ZH 2e2µ, 1CC	0.015		
ZH 2e2µ, 2CC	0.036		
ZH, H → WW	0.041		
ZH, H → ZZ	0.024		
<mark>ZH, H → π</mark>	0.044		
ZH, other H decays	0.005		
ZH total	0.114		
gg → H → ZZ 4e, 4CCnoICR	0.004		
gg → H → ZZ 4e, 3CCnoICR	0.001		
gg → H → ZZ 4e, 2CCnoICR	< 0.001		
gg → H → ZZ 4e, 1ICR	0.002		
gg → H → ZZ 4µ	0.007		
gg → H → ZZ 2e2µ, 0CC	< 0.001		
gg → H → ZZ 2e2µ, 1CC	0.002		
gg → H → ZZ 2e2µ, 2CC	0.007		
$gg \rightarrow H \rightarrow ZZ$ total	0.026		
Signal total	0.137		

final state	observed events	Signal m _н = 125 GeV	expected non-resonant ZZ	QCD background	migration background	tt background	cosmic background
4e	5	0.035	4.12	0.61	0.09	0.00	0.00
4mu	3	0.040	4.26	0.12	0.03	0.00	< 0.01
2e2mu	5	0.062	6.93	0.59	0.01	0.04	< 0.01

Kinematic distributions

150 200 $\mathbb{E}_{\mathrm{T}}(\mathrm{GeV})$ 🔶 Data ZH(m_u=125 GeV) $H(m_{H} = 125 \text{ GeV}) \rightarrow ZZ$ non-resonant ZZ Z+jets Migration

400

ZH(m_H=125 GeV)

non-resonant ZZ

Kinematic distributions

19

Examine Higgs masses 115 - 200 GeV in increments of 5 GeV.

Use COLLIE to do limits calculation.

COLLIE uses a CLs method: a log-likelihood ratio (LLR) test statistic is formed using **Poisson probabilities for number of signal**, background and observed events.

Confidence levels are derived by integrating the LLR using both CL_{s+h} and CL_{h} .

Excluded cross section is obtained when $CL_s = CL_{s+b}/CL_b < 0.05$.

Need a variable to set limits: four-lepton mass the natural choice For $gg \rightarrow H \rightarrow ZZ$.

ZH production has no such peak! Large MET instead. No backgrounds have a real source of MET.

Method: for events with MET < 30 GeV four-lepton mass is used; for events with MET > 30 GeV MET is used.

Collie inputs

Limits results

COLLIE takes yields and their stat. uncer. plus associated systematics to provide exp. and obs. limits as function of Higgs mass:

mH (GeV)	expected	observed
115	57.3	78.9
120	54.9	60.6
125	42.8	42.3
130	30.6	33.5
135	21.5	21.0
140	16.2	18.2
145	13.4	13.9
150	12.4	12.1
155	13.4	14.2
160	20.8	20.6
165	29.6	28.3
170	32.3	39.0
175	30.4	28.4
180	22.9	19.6
185	13.3	9.7
190	11.8	8.6
195	11.8	9.5
200	12.4	9.9

Conclusion

* We successfully performed a cross section measurement of $ZZ \rightarrow 4$ leptons channel, finding as the final result:

 $1.32^{+0.29}_{-0.25}(stat.) \pm 0.12(syst.) \pm 0.04(lumi) pb$

* We extended the analysis to search for SM Higgs boson between 1115 and 200 GeV. At a Higgs mass of 125 GeV, we set expect to set a limit of 43 times the SM and set a limit of 42 times the SM at 95% confidence level.