

Measuring the W Mass at DØ

Mandy Rominsky on behalf of the DØ Collaboration

Why is precisely measuring the W mass important?

 In the Standard Model, the M_w can be calculated from other EW parameters:

$$M_W = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_F}} \frac{1}{\sin\theta_W \sqrt{1-\Delta r}}$$

• And through radiative corrections (Δr) is related to M_{top} and M_{H}

• Unknown particles in these loops will change the form of Δr

Precisely measuring M_w limits couplings to new particles

Why is precisely measuring the W mass important?

Any deviation would be new physics

- Limited by the precision in ΔM_w
 - Direct measurement: 15 MeV
 - Indirect measurement: 11 MeV

- Prior to July 2012: Use M_w to constrain M_H
- Now can also use M_H to constrain
 M_w

What are we measuring?

- M_w is measured using the kinematic distributions in W -> ev events:
 - Transverse mass

$$M_T^W = \sqrt{2P_T^e E_T (1 - \cos \Delta \phi)}$$

- Lepton momentum
- Missing transverse energy
- Z->ee events are used for detector calibration

And where are we measuring it?

- Results presented here are based on 5.3 fb⁻¹ of data
- Another 5 fb⁻¹ are on tape and being analyzed

- Use the D0 calorimeter
 - Central electron energy resolution is 4.2% averaged over electron E and η spectra in W->ev events
- Use central electrons: $|\eta_{det}| < 1.05$

Analysis Strategy

- Measure distributions of 3 variables: M_T^W, MeT, p_T^e
- Compare data to parameterized detector model templates with different mass hypotheses
- Templates made with:
 - Generator level done with ResBos (W/Z production and decay) , Photos (FSR)
 - Parameterized detector model built using Z->ee data samples
- Blinded Analysis
 - Central value hidden by an unknown offset.
- Use binned likelihood fits to extract mass from templates fit to data
- Combine results across observables
- Full MC closure test was performed to study the method

Electron Energy Response

- Calibrate the calorimeter for electron response
 - Use Z->ee data events
 - Use the Z peak to fit the parameters (precisely measured by LEP)
- First correct for nonlinear effects like underlying events and dead material
- Then assume a linear response

ponse
$$R_{EM}(E) = \alpha(E - \overline{E}) + \beta + \overline{E}$$

• Use 4 luminosity bins

Electron Energy Response

Closure test using Z->ee data

World Average $M_z = 91.188 \pm 0.002$ GeV

Hadronic Recoil Response

$$\vec{u}_T = \vec{u}_T^{HARD} + \vec{u}_T^{SOFT} + \vec{u}_T^{ELEC} + \vec{u}_T^{FSR}$$

- u_T^{Hard} : Recoil against W/Z
- u_T^{Soft} : Recoil from pileup and spectator partons
- *u_T^{electron}*: Hadronic energy in cone or electron shower leakage out of cone
- u_T^{FSR} : Final state radiation photons

Hadronic Recoil Response

- The u_{τ}^{Hard} component is derived from Z-> vv events
- u_{τ}^{Soft} comes from zero bias and min bias data look up tables
- u_{τ}^{Elec} and u_{τ}^{FSR} are determined from dedicated simulations
- Final response and resolution taken from fits to momentum imbalance

 $\vec{p}_T(ee) + \vec{u}_T$

Systematic Uncertainties

- Experimental systematic uncertainties are driven by the statistics of the Z sample
- Electron Energy scale and PDF are the largest uncertainties

Source	$\sigma(m_W)~{ m MeV}~m_T$	$\sigma(m_W) \; { m MeV} \; p_T(e)$	$\sigma(m_W) { m MeV} E_T$
Experimental			
Electron Energy Scale	16	17	16
Electron Energy Resolution	2	2	3
Electron Energy Nonlinearity	4	6	7
W and Z Electron energy	4	4	4
loss differences			
Recoil Model	5	6	14
Electron Efficiencies	1	3	5
Backgrounds	2	2	2
Experimental Total	18	20	24
W production and			
decay model			
PDF	11	11	14
QED	7	7	9
Boson p_T	2	5	2
W model Total	13	14	17
Total	22	24	29

Results

Conclusions

- D0 measured the W mass to ΔM_w = 23 MeV
 - Same as previous world average
- Current world average is $\Delta M_W = 15 \text{ MeV}$
 - Includes latest CDF result
- By including the full data set and end calorimeter electrons, we should reach ΔM_W = 15 MeV with D0 alone

Backups

Event Selection

Event selection

- Single EM trigger
- Vertex |z| < 60 cm

Electron Selection

- p_T > 25 GeV
- HMatrix7 < 12, emf > 0.9, iso < 0.15
- $|\eta_{det}| < 1.05$ (calorimeter fiducial region)
- In the calorimeter φ fiducial region, as determined by track
- Spatial track match, track $p_T > 10$ GeV and at least 1 SMT hit

Z->ee Selection

- At least 2 good electrons
- Hadronic recoil transverse moment $u_T < 15 \text{ GeV}$
- Invariant mass: 70 < m_{ee} < 110GeV

W->ev Selection

- At least one good electron
- Hadronic recoil transverse moment u_T < 15 GeV
- Invariant mass: 50 < m_{τ} < 200 GeV
- MeT > 25 GeV

Forward electron Requirements: Hmatrix8 < 20 , $1.5 < |\eta_{det}| < 2.5$