Measuring the W Mass at DØ

Mandy Rominsky on behalf of the DØ Collaboration
Why is precisely measuring the W mass important?

- In the Standard Model, the M_W can be calculated from other EW parameters:

$$M_W = \sqrt{\frac{\pi \alpha}{\sqrt{2} G_F}} \frac{1}{\sin \theta_W \sqrt{1 - \Delta r}}$$

- And through radiative corrections (Δr) is related to M_{top} and M_H

- Unknown particles in these loops will change the form of Δr

Precisely measuring M_W limits couplings to new particles
Why is precisely measuring the W mass important?

- Prior to July 2012: Use M_W to constrain M_H
- Now can also use M_H to constrain M_W

Any deviation would be new physics
- Limited by the precision in ΔM_W
 - Direct measurement: 15 MeV
 - Indirect measurement: 11 MeV
What are we measuring?

- M_W is measured using the kinematic distributions in $W \rightarrow ev$ events:
 - Transverse mass
 - Lepton momentum
 - Missing transverse energy
- $Z \rightarrow ee$ events are used for detector calibration

$$M_T^W = \sqrt{2 \vec{P}_T \cdot \vec{E}_T (1 - \cos \Delta \phi)}$$
And where are we measuring it?

- Use the D0 calorimeter
- Central electron energy resolution is 4.2% averaged over electron E and η spectra in W-ν events
- Use central electrons: $|\eta_{\text{det}}| < 1.05$

- Results presented here are based on 5.3 fb$^{-1}$ of data
- Another 5 fb$^{-1}$ are on tape and being analyzed
Analysis Strategy

• Measure distributions of 3 variables: M_T^W, MeT, p_T^e
• Compare data to parameterized detector model templates with different mass hypotheses
• Templates made with:
 • Generator level done with ResBos (W/Z production and decay), Photos (FSR)
 • Parameterized detector model built using Z->ee data samples
• Blinded Analysis
 • Central value hidden by an unknown offset.
• Use binned likelihood fits to extract mass from templates fit to data
• Combine results across observables
• Full MC closure test was performed to study the method
Electron Energy Response

- Calibrate the calorimeter for electron response
 - Use Z-ee data events
 - Use the Z peak to fit the parameters (precisely measured by LEP)
- First correct for nonlinear effects like underlying events and dead material
- Then assume a linear response
 - Use 4 luminosity bins

\[R_{EM}(E) = \alpha(E - \bar{E}) + \beta + \bar{E} \]

\[L = 36 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1} \]
Electron Energy Response

- Closure test using Z→ee data

\[M_Z = 91.193 \pm 0.017 \text{ (stat) GeV} \]

World Average \(M_Z = 91.188 \pm 0.002 \text{ GeV} \)
Hadronic Recoil Response

\[\vec{u}_T = \vec{u}_T^{HARD} + \vec{u}_T^{SOFT} + \vec{u}_T^{ELEC} + \vec{u}_T^{FSR} \]

- \(u_T^{Hard} \): Recoil against W/Z
- \(u_T^{Soft} \): Recoil from pileup and spectator partons
- \(u_T^{electron} \): Hadronic energy in cone or electron shower leakage out of cone
- \(u_T^{FSR} \): Final state radiation photons
Hadronic Recoil Response

- The u_T^{Hard} component is derived from $Z \rightarrow \nu\nu$ events
- u_T^{Soft} comes from zero bias and min bias data look up tables
- u_T^{Elec} and u_T^{FSR} are determined from dedicated simulations
- Final response and resolution taken from fits to momentum imbalance $\vec{p}_T(ee) + \vec{u}_T$
Systematic Uncertainties

- Experimental systematic uncertainties are driven by the statistics of the Z sample
- Electron Energy scale and PDF are the largest uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>$\sigma(m_W)$ MeV</th>
<th>m_T</th>
<th>$\sigma(m_W)$ MeV $p_T(e)$</th>
<th>$\sigma(m_W)$ MeV E_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Energy Scale</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Electron Energy Resolution</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electron Energy Nonlinearity</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>W and Z Electron energy loss differences</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Recoil Model</td>
<td>5</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Electron Efficiencies</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Backgrounds</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Experimental Total</td>
<td>18</td>
<td>20</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>W production and decay model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>11</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>QED</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Boson p_T</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>W model Total</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>24</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Method (4.3 fb^{-1})</th>
<th>M_W (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_T(e, \nu)$</td>
<td>80371 ± 13 (stat)</td>
</tr>
<tr>
<td>$p_T(e)$</td>
<td>80343 ± 14 (stat)</td>
</tr>
<tr>
<td>$E_T(e, \nu)$</td>
<td>80355 ± 15 (stat)</td>
</tr>
<tr>
<td>Combination $m_T \oplus p_T$ (4.3 fb^{-1})</td>
<td>80367 ± 26 (syst + stat)</td>
</tr>
<tr>
<td>Combination (5.3 fb^{-1})</td>
<td>80375 ± 23 (syst + stat)</td>
</tr>
</tbody>
</table>
Conclusions

- D0 measured the W mass to $\Delta M_W = 23$ MeV
 - Same as previous world average
- Current world average is $\Delta M_W = 15$ MeV
 - Includes latest CDF result
- By including the full data set and end calorimeter electrons, we should reach $\Delta M_W = 15$ MeV with D0 alone
Backups
Event Selection

Event selection
• Single EM trigger
• Vertex $|z| < 60$ cm

Electron Selection
• $p_T > 25$ GeV
• $\text{HMatrix}_7 < 12$, $\text{emf} > 0.9$, $\text{iso} < 0.15$
• $|\eta_{\text{det}}| < 1.05$ (calorimeter fiducial region)
• In the calorimeter ϕ fiducial region, as determined by track
• Spatial track match, track $p_T > 10$ GeV and at least 1 SMT hit

Z-\text{ee} Selection
• At least 2 good electrons
• Hadronic recoil transverse moment $u_T < 15$ GeV
• Invariant mass: $70 < m_{ee} < 110$ GeV

W-\text{ev} Selection
• At least one good electron
• Hadronic recoil transverse moment $u_T < 15$ GeV
• Invariant mass: $50 < m_T < 200$ GeV
• $\text{MeT} > 25$ GeV

Forward electron Requirements: $\text{Hmatrix}_8 < 20$, $1.5 < |\eta_{\text{det}}| < 2.5$