

The NA62 experiment at CERN

NA48, NA48/1 1997-2002 Simultaneous K_{S} , K_{L} beams Re ε'/ε , rare K_s and hyperon decays

2003-2004 NA48/2 Simultaneous K^+ , K^- beams Direct CP violation, rare K^{\pm} decays

2007-2008 NA62 (using NA48/2) $R_{K} = \Gamma(K_{e2}) / \Gamma(K_{u2})$

Primary NA62 goal: Detect ~100 $K^+ \rightarrow \pi^+ v \overline{v}$ decays with S/B ~ 10

Minimal theoretical uncertainty **BR** $(K^+ \rightarrow \pi^+ v \bar{v})_{\text{SM}} \sim 10^{-10}$ Precise measurement of unitarity triangle for *K* system for K system

Opportunity to perform additional searches for novel phenomena:

- K decays with explicit lepton flavor or number violation (LFNV)
- Forbidden π^0 decays tagged by $K^+ \rightarrow \pi^+ \pi^0$

Rare kaon decays

FCNC processes dominated by *Z*-penguin and box diagrams

Short-distance amplitudes related to V_{CKM} with minimal non-parametric uncertainty

Rate measurements overconstrain \mathbf{V}_{CKM} and may provide evidence for new physics

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR \times 10 ⁻¹¹	Exp. BR × 10 ⁻¹¹
$K_L \rightarrow \mu^+ \mu^-$	40%	20%	681 ± 32	684 ± 11
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28†
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38†
$K^+ \rightarrow \pi^+ v \overline{v}$	90%	4%	7.8 ± 0.8	17 ± 12
$K_L \rightarrow \pi^0 v \overline{v}$	>99%	2%	2.4 ± 0.4	<26000 ⁺

*Approx. error on LD-subtracted rate excluding parametric contributions [†]90% CL

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{Re \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{Re \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right]$$
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}$$

$K \rightarrow \pi v \bar{v}$ and new physics

SM4: SM with 4th generation (Buras et al. '10) **LHT:** Littlest Higgs with T parity (Blanke '10) **RSc:** Custodial Randall-Sundrum (Blanke '09) **MFV:** Minimal flavor violation (Hurth et al. '09)

$K^+ \rightarrow \pi^+ v \bar{v}$: Signal and background **NA62**

Decay backgrounds			
Mode	BR		
$\mu^+ \nu(\gamma)$	63.5%		
$\pi^+\pi^0(\gamma)$	20.7%		
$\pi^+\pi^+\pi^-$	5.6%		
$\pi^0 e^+ v$	5.1%		
$\pi^0\mu^+ u$	3.3%		
$\pi^+\pi^-e^+\nu$	4.1 × 10 ^{−5}		
$\pi^0\pi^0 e^+ v$	2.2 × 10⁻⁵		
$\pi^+\pi^-\mu^+ u$	1.4 × 10⁻⁵		
$e^+ v(\gamma)$	1.5 × 10 ^{−5}		
Other heeksrounde			

Other backgrounds

Beam-gas interactions

Upstream interactions

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Background rejection

- High resolution m^2_{miss} reconstruction
- Precise measurement of p_K and p_{π}
- Minimize multiple scattering

High-rate beam tracker Low-mass spectrometer in vacuum

Rejection from kinematics alone: 10⁻⁴ at best

(Further) rejection relies on PID and vetoes

- Veto detectors for π^0 rejection
- K⁺ identification in hadron beam
- Detectors for π/μ separation

Hermetic γ vetoes Non-destructive beam ID Secondary particle ID Muon vetoes

The NA62 experiment at the SPS

NA62 A

K12 high-intensity *K*⁺ beamline

Primary SPS proton beam:

- *p* = 400 GeV protons
- 3×10^{12} protons/pulse ($3 \times NA48/2$)
- Duty factor ~ 0.3 Expect similar to 4.8s/16.8 s duty cycle for NA48/2 Simultaneous beam delivery to LHC

High-intensity, unseparated secondary beam

- Momentum selection chosen to optimize *K* decays
- $p = 75 \text{ GeV} (1.4 \times \text{more } K^+ \text{ than NA48/2})$
- $\Delta p/p \sim 1\%$ (3× smaller than NA48/2)
- Beam acceptance 12.7 μ str (32× NA48/2)

 Total rate
 525 MHz π

 750 MHz
 170 MHz p

 45 MHz K

Decay volume

- 60 m long, starting at z = 102 m from target
- 10% of K^+ decay in FV ($\beta\gamma c\tau = 560$ m)

 $4.5 \times 10^{12} K^+ \text{ decays/yr} = 45 \times \text{ NA48/2}$

High-rate, precision tracking

Beam tracking: Gigatracker

3 planes of hybrid Si pixel detectors: 1 sensor, 10 bump-bonded readout chips

Tracks individual particles in 750 MHz unseparated beam

Pixel size 300 × 300 μ m² → σ_p/p ~ 0.2%, σ_{θ} = 16 μ rad

Secondary tracking: 4 straw chambers in vacuum

4 chambers, 2.1 m in diameter 16 layers (4 views) of straws per chamber

 $\sigma \le 130 \ \mu m (1 \ view)$ 0.45 X_0 per chamber σ_p/p = 0.32% \oplus 0.008% p $\sigma_{ heta(K\pi)}$ = 20-50 µrad

MNP33 dipole: 0.36T (Δp_{\perp} = 270 MeV)

Particle identification

Primary μ/π separation from downstream muon vetoes (MUV)

MUV1-2: Fe/scintillator hadron calorimeter

• Used offline to provide principal veto for $K \rightarrow \mu v$

18 M

• Rejects μ to 10⁻⁵

MUV3: Fast μ identification for trigger

• Vetoes μ online at 10 MHz with $\sigma_t < 1$ ns

RICH provides additional $10^{-2} \mu$ rejection to exclude $K \rightarrow \mu v$

3.7 m

- μ/π separation to better than 1% for 15 < p < 35 GeV
- Measures π crossing time with $\sigma_t < 100$ ps
- Provides L0 trigger for charged particles
- Ne gas at 1 atm $p_{\rm thresh}$ = 12 GeV for π
- 2000 8-mm PMTs on upstream flanges

Beam timing and PID

Gigatracker (750 MHz) Must precisely Downstream detectors match events (~10 MHz)

Matching downstream π track to wrong beam particle leads to 3× increase in $\sigma(m_{miss})$ Use detectors with good time resolution to avoid mismatching:

Gigatracker: $\sigma_t < 200$ ps/stationKTAG: $\sigma_t = 100$ psRICH: $\sigma_t < 100$ ps

Mismatch probability < 1% Still accounts for half of kinematic rejection inefficiency

Non-destructive beam PID using KTAG differential Cerenkov counter

- Identifies 45 MHz of K⁺ in 750 MHz of unseparated beam
- Beam ID fundamental to suppress background from beam-gas interactions Without KTAG, need 10⁻⁶ mbar vacuum in decay tank!
- Original CEDAR-W design, now running with H₂ at 3.85 bar
- Completely new, high segmentation readout

Hermetic photon vetoes

$\mathsf{BR}(K^{\scriptscriptstyle +} \twoheadrightarrow \pi^{\scriptscriptstyle +}\pi^0) = 21\%$

- Kinematic rejection (M^2_{miss}) = 10⁻⁴
- Cut $p_{\pi+} < 35$ GeV gives $\pi^0 \rightarrow \gamma \gamma$ with 40 GeV
- Remaining events have 2γ in one of three configurations:
 - **81.2%** Both γ in forward vetoes
 - **18.6%** 1γ in forward vetoes, 1γ in LAVs
 - **0.2%** 1 γ in LAVs, 1 γ undetected

Detector	θ [mrad]	Max. 1 – ε
LAV	8.5 - 50	10 ⁻⁴ at 200 MeV
LKr	1 - 8.5	10 ⁻³ at 1 GeV 10 ⁻⁵ at 10 GeV
IRC+SAC	< 1	10 ⁻⁴ at 5 GeV

Photon energy deposited in detector [GeV]

Photon veto detectors

Large-angle vetoes (LAV) $8.5 < \theta < 50 \text{ mrad}$

12 stations at intervals of ~10m along vacuum decay volume

4-5 rings/station of lead glass blocks salvaged from OPAL EM barrel calorimeter

1–ε for e⁻ at 200 MeV: (1±1) × 10⁻⁴ Tagged e⁻ at Frascati BTF

NA48 liquid krypton calorimeter (LKr) $1 < \theta < 8.5$ mrad

Quasi-homogeneous ionization calorimeter Readout towers $2 \times 2 \text{ cm}^2$ - 13248 channels Depth 127 cm = 27 X_0

1–\varepsilon for γ with E > 10 GeV: $< 8 \times 10^{-6}$ $\pi\pi^0$ and e^- bremsstrahlung events in NA48

Trigger and data acquisition

Example L0 trigger primitives:

- **Q**^{*n*} Hits in at least *n* Hodo quadrants
- **LKR** $_n(x)$ At least n LKr clusters with energy E > x GeV
- **MUV**^{*n*} Hits in at least *n* MUV3 pads

10 MHz L0 primitives

O(kHz) L2 output to disk

Performance for $K^+ \rightarrow \pi^+ v \bar{v}$

Acceptance: ~12%

3% in PNN1 region9% in PNN2 region50% loss from momentum cutDetector inefficiencies included

45 signal events/yr

- 1 track with 15 < p_{π} < 35 GeV and π PID in RICH
- No γ s in LAV, LKr, IRC, SAC
- No μ s in MUVs
- 1 beam particle in Gigatracker with *K* PID by KTAG
- $z_{\rm vtx}$ in 60 m fiducial volume

Expected backgrounds			
$K^+ \rightarrow \pi^+ \pi^0$	10%		
$K^+ \rightarrow \pi^+ \pi^0 \gamma_{IB}$	3%		
$K^+ \rightarrow \mu^+ v$	2%		
$K^+ \rightarrow \mu^+ \nu \gamma_{IB}$	1%		
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	< 1%		
K^{+}_{e4} , other 3 track decays	< 1%		
$K^{+}_{e3}, K^{+}_{\mu3}$	negligible		
Total	< 20%		

NA62 sensitivity for LFNV decays

$\begin{bmatrix} 1 \times 10^{13} K^+ \text{ decays} \\ 2 \times 10^{12} \pi^0 \text{ decays} \end{bmatrix}$		Single-event sensitivity 1/(decays × acceptance)	
UL at 90% CL	Experiment	NA62 acceptance*	
1.3 × 10 ⁻¹¹	BNL 777/865	100/	
5.2 × 10 ⁻¹⁰	BNL 865	~10%	
5.0 × 10 ⁻¹⁰	BNL 865	~10%	
6.4 × 10 ⁻¹⁰	BNL 865	~5%	
1.1 × 10 ⁻⁹	NA48/2	~20%	
2.0 × 10 ^{−8}	Geneva Saclay	~2%	
no data		~10%	
3.8 × 10 ⁻¹⁰		~2%	
3.4 × 10 ⁻⁹	KIEV		
	$\begin{cases} 1 \times 10^{13} K \\ 2 \times 10^{12} \pi^{0} \\ \hline \\ 2 \times 10^{12} \pi^{0} \\ \hline \\ \\ 1.3 \times 10^{-11} \\ 5.2 \times 10^{-10} \\ 5.0 \times 10^{-10} \\ \hline \\ 6.4 \times 10^{-10} \\ 1.1 \times 10^{-9} \\ \hline \\ 2.0 \times 10^{-8} \\ \hline \\ no \ data \\ \hline \\ 3.8 \times 10^{-10} \\ \hline \\ 3.4 \times 10^{-9} \\ \end{cases}$	$\begin{bmatrix} 1 \times 10^{13} K^{+} \text{ decays} \\ 2 \times 10^{12} \pi^{0} \text{ decays} \end{bmatrix} \frac{1}{7}$ $\frac{1}{2} \times 10^{12} \pi^{0} \text{ decays} \end{bmatrix} \frac{1}{7}$ $\frac{1}{2} \times 10^{12} \pi^{0} \text{ decays} \end{bmatrix} \frac{1}{7}$ $\frac{1}{2} \times 10^{-11} \qquad \text{BNL 777/865}$ $\frac{1}{3} \times 10^{-10} \qquad \text{BNL 865}$ $\frac{1}{3} \times 10^{-10} \qquad \text{BNL 865}$ $\frac{1}{3} \times 10^{-8} \qquad \text{Geneva Saclay}$ $\frac{1}{3} \times 10^{-10} \qquad \text{KTeV}$ $\frac{1}{3} \times 10^{-9} \qquad \text{KTeV}$	

* From fast Monte Carlo simulation with flat phase-space distribution. Includes trigger efficiency.

NA62 single-event sensitivities:

~10⁻¹² for K^+ decays ~10⁻¹¹ for π^0 decays

Lepton number violation: $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm} MA62$

LNV in $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ could provide evidence for Majorana nature of neutrino

NA48/2 (2011) PLB697 BR($\pi^{\mp}\mu^{\pm}\mu^{\pm}$) < 1.1 × 10⁻⁹ 90%CL $\langle M_{\mu\mu} \rangle < 0.3 \text{ TeV}$

Like-sign muons $(\pi^{\mp}\mu^{\pm}\mu^{\pm})$ Events 10⁶ Data 10⁵ ΜC πππ 10⁴ 10³ 10² 10 1 10⁻¹ 0.5 0.52 0.54 0.48 0.46 0.4 0 42 0 44 $M(\pi\mu\mu)$ [GeV]

NA48/2

U

52 candidate events with $M(\pi\mu\mu) \sim m_K$

 W^+

In agreement with MC background prediction

• Unusual $\pi\pi\pi$ topology with 2 $\pi \rightarrow \mu$ decays

vMaj

 W^{+}

U

• 1 of $\pi \rightarrow \mu$ between magnet & last DC

NA62

60× increase in kaon flux Increased p_{\perp} kick in will eliminate $K_{\pi 3}$ background without p_{π} cut **Potential sensitivity ~ 10⁻¹²**

Rare π^0 decays in NA62

$2 \times 10^{12} \pi^0$ decays in FV in 2 years of data will allow substantial improvement of results in many channels

Mode	Current knowledge	Experiment	Expectation in SM	Physics interest	
Neutral modes					
$\pi^0 \rightarrow 3\gamma$	BR _{90CL} < 3.1×10 ⁻⁸	Crystal Box	Forbidden	Violates C	
$\pi^0 \rightarrow 4\gamma$	BR _{90CL} < 2×10 ⁻⁸	Crystal Box	BR ~ 10 ^{−11}	Scalar states $\pi^0 \rightarrow SS$	
$\pi^0 \rightarrow inv$	BR _{90CL} < 2.7×10 ^{−7}	BNL 949	BR < 10 ^{−13} (cosm. limit)	N_{v} , LFV	
Charged modes					
$\pi^0 \rightarrow e^+ e^- e^+ e^-$	BR = 3.34(16)×10 ^{−5}	KTeV	3.26(18) ×10⁻⁵	Off-shell vectors	
$\pi^0 ightarrow e^+ e^- \gamma$	$ \begin{array}{l} {\sf BR}_{95{\sf CL}}(\pi^0 {\rightarrow} U \gamma): \\ < 1 {\times} 10^5, M_U = 30 \; {\sf MeV} \\ < 3 {\times} 10^6, M_U = 100 \; {\sf MeV} \end{array} $	WASA/COSY	Null result	Dark forces	

Rare π^0 decays in NA62

Search for *U* boson in $\pi^0 \rightarrow e^+e^-\gamma$ decay

New, light vector gauge boson with weak couplings to charged SM fermions

Could mediate interactions of dark-matter constituents

Expect to collect ~10⁸ $\pi^0 \rightarrow e^+e^-\gamma$ decays/year

Mass resolution $M_{ee} \sim 1 \text{ MeV}$

Potential for ~100× improvement in BR limit for $30 < M_U < 100$ MeV

Search for $\pi^0 \rightarrow invisible$

 $\pi^0 \rightarrow v\overline{v}$ forbidden by angular momentum conservation if vs are massless For a given flavor of massive \overline{v} , BR($\pi^0 \rightarrow v\overline{v}$) directly related to m_v

Direct experimental limit: BNL 949 (2005) **BR**(π^0 → inv) < 2.7 × 10⁻⁷ 90%CL Inferred limits on BR($\pi^0 \rightarrow v\overline{v}$) from: Measured v_{τ} mass: $< 5 \times 10^{-10}$ Astrophysics/cosmology: $< 3 \times 10^{-13}$

Experimental signature identical to $K^+ \rightarrow \pi^+ v \overline{v}$

Only difference: in $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow$ invisible, π^+ has 2-body decay kinematics

Limit BR($\pi^0 \rightarrow$ invisible) to less than 10⁻⁹, ~100× better than present limits

Experimental status

Installing/installed: KTAG, LAV (8/12), LKr (readout), SAC Under construction: CHANTI, STRAWS, RICH, IRC, MUV Advanced design stage: Gigatracker

NA62 will take 2 years of data starting late 2014

Summary & outlook

Rare kaon decays are powerful probes for new physics

• $K^+ \rightarrow \pi^+ v \bar{v}$ highly suppressed and precisely calculated in the SM

NA62 will measure BR($K^+ \rightarrow \pi^+ v \overline{v}$) to 10%

- Will shed light on flavor structure of new physics if discovered at LHC
- May provide evidence for new physics even if not discovered at LHC

NA62 is well adapated to search for other rare/forbidden K and π decays

- Copious production of $K^{\!\scriptscriptstyle +}$ and π^0
- Robust background rejection: tracking, PID, vetoes

NA62 will take two years of data starting in late 2014

- ~10¹³ K^+ decays in the fiducial volume
- ~10% acceptance (including trigger efficiency) for LFNV decays
- Single event sensitivities ~10⁻¹² for LFNV decays and improved sensitivity for related searches

