

KOTO experiment: a measurement of the branching ratio of rare decay

$$K_L \to \pi^0 \nu \bar{\nu}$$

Jia Xu University of Michigan On behalf of KOTO collaboration 08/16/2013

Outline

- Overview
- Physics motivation
- Experimental strategy
- E391a challenges
- Detector status
- 1st physics run and the radiation accident

Overview

- KOTO (K⁰ at Tokai) experiment is designed to measure the branching ratio of rare decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$. The SM branching ratio prediction is 2.43(39)(06) ×10⁻¹¹ (Phys.Rev.D.034030(2011)), with a very small theoretical uncertainty of 2.5%.
- The facility to generate K_L beam for KOTO is the 50 GeV proton synchrotron (Main Ring energy is 30 GeV) in J-PARC, Tokai-mura, Japan.
- Pilot experiment E391a (2001-2005) gave an upper limit: Br< 2.6 ×10⁻⁸ at 90% confidence level (Phys. Rev. D, 072004 (2010)), 3 orders of magnitude larger than SM predictions.

- Fundamental test of the Standard Model
 - It's a Flavor Changing Neutral Current (FCNC) process induced through electroweak penguin and box diagrams with t quark internal loop.

 Direct CP violating process: branching ratio proportional to the square of the imaginary part of CKM matrix

(in Wolfstein parametrization to 3rd order of λ)

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 \left(\rho - \underline{i \eta}\right) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 \left(1 - \rho - \underline{i \eta}\right) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

 $Br(K_L^0 \to \pi^0 \nu \bar{\nu}) = 6.87 \times 10^{-4} \times Br(K^+ \to \pi^0 e^+ \nu) \times A^4 \lambda^8 \eta^2 X^2(x_t)$

 $= (2.43 \pm 0.39 \pm 0.06) \times 10^{-11}$

- Beyond Standard Model (BSM) extensions
 - The decay is dominated by electroweak loop diagrams, thus sensitive to short distance (high energy scale) physics. Therefore, it's a good probe of high energy scale physics using a low energy process.

6

- Beyond Standard Model (BSM) extensions
 - The decay is dominated by electroweak loop diagrams, thus sensitive to short distance (high energy scale) physics. Therefore, it's a good probe of high energy scale physics using a low energy process.

Experimental strategy

- Select events with only two photons and nothing else. (Calorimeter + hermetic veto)
- Using the information of deposit energy (E_i) and position (r_i) of the two photons, reconstruct the π⁰ decay point (Z_{vertex})(which is the K_L decay point), and P_T.
- Define a signal region in P_T - Z_{vertex} plane to find the signal.
- K_L pencil beam: put a constraint on kinematic reconstruction

Pilot E391a and its challenges

- E391a gives an upper limit measurement of Br < 2.6 × 10⁻⁸ at 90% Confidencelevel. (Phys. Rev. D, 072004 (2010))
- Neutron interaction with detectors close to the beam is the biggest background. At a single event sensitivity of 1.1×10^{-8} .

How to make an improvement of 1000 times to reach SM sensitivity

- Halo neutron suppression
- $K_L \rightarrow 2\pi^0$ background suppression
- New readout electronics

Beam line

- 30 GeV accelerator
 - Higher beam intensity, K_L yield
 - Large extraction angle
- Re-designed collimator systems to suppress halo neutron.

	J-PARC E14 KOTO	KEK-E391a
 Primary proton energy 	30 GeV	12 GeV
 Proton intensity(/spill) 	2x10 ¹⁴	2.5x10 ¹²
 Spill-length/repetition 	0.7s / 3.3s	2s / 4s
 Extraction angle 	16 deg.	4 deg.
 K_L yield(/spill) 	8.1x10 ⁶	3.3x10 ⁵
 Average P_{KL} 	2.1 GeV/c	2.6 GeV/c
• n/K _L ratio	6.5	45

Veto

Calorimeter

- Csl Calorimeter is the endcap detector to measure photon energy and position.
- Some upgrade from E391a:
- Finer granularity using KTeV CsI crystals. ->better position resolution
 - 25 * 25 mm² and 50 * 50 mm²
 - 2716 readout channels in total
- Longer Length ->reduce photon punch-through
 - 16X₀->27 X₀
- Improve π^0 reconstruction:

Charged Veto (CV)

- Charged Veto is one endcap detector vetoing charged decay. Ke3, Kµ3, $\pi^+ \pi^- \pi^0$ decay.
- 2 planes of plastic scintillator
 - 2m diameter, 3mm thick
 - Wavelength Shift fiber and MPPC readout
 - Light material to reduce neutron interaction
 - <10⁻⁶ inefficiency required

Main Barrel (MB)

× SUVO × ISIT

- Main Barrel (MB) cover the decay region
 - Plastic scintillator and lead sandwich structure
 - WLS fiber and two end PMT readout
 - 14 X0
- Main background: $K_L \rightarrow 2\pi^0$ with one or two γ escaped MB.
- To reduce inefficiency, one MB upgrade is to insert 5 X0 thickness of Pb/scintillator.

Main Barrel photon detection inefficiency

Main Barrel (MB)

- Main Barrel (MB) cover the decay region
 - Plastic scintillator and lead sandwich structure (14 X0)
 - WLS fiber and two end PMT readout
- Main background: $K_L \rightarrow 2\pi^0$ with one or two γ escaped MB.
- To reduce inefficiency, one MB upgrade is to insert 5 X0 thickness of Pb/scintillator.

- NCC is the veto detector at the exit of FB close to the beam line.
- NCC is made up of undoped CsI crystals segmented along the z axis to ٠ differentiate neutron from photon based on shower shapes.
- Two functions: ٠

K

- veto events with halo-neutron interactions. ->Common readout
- Measure the amount of halo-n and energy spectrum to estimate background.

-> Individual readout

Beam Hole Charged Veto (BHCV) & Beam Hole Photon Veto (BHPV)

- BHCV and BHPV are beam hole detectors downstream to catch the particles escaping the beam hole so as to complete the hermeticity.
- Due to Main Barrel and CV inefficiency, the BHCV will catch the $\pi^+ \pi^-$ to reduce the K_L -> $\pi^+ \pi^- \pi^0$ background. BHPV will catch the extra photon to reduce the K_L -> $2\pi^0$ background. BHPV
- BHCV: scintillator plate.

Data Acquisition system

- Challenges for rare decay experiment DAQ: high timing resolution; high data rate.
- Waveform sampling ADC front-end (0.1ns timing resolution)
- 3-tier pipeline trigger system

10⁴

10³

 10^{2}

10

10⁻¹ 400

Results from 2013 January engineering run

- $K_1 \rightarrow 3\pi^0$ reconstruction •
 - Good statistics 20%
- studying CsI performance, reconstruction method and MC. KL \rightarrow $3\pi^0$ event display [MeV] 10^{2} 10^{1} -800 -600 -400 -200 Reconstructed $3\pi^0$ mass (w/o veto info.) 480 500 420 440 520 540 560 580 460
- $K_1 \rightarrow 2\pi^0$ reconstruction
 - Main background
 - Good tool for studying veto performance

600

mass [MeV/c²]

1st Physics run (May-June 2013)

- The original plan for the KOTO physics run was to reach the Grossman-Nir bound sensitivity by running for a month.
- A radiation accident occurred in Hadron Hall on May 23rd. The data taking was terminated after an integrated Protons on Target (P.O.T) of 1.6×10¹⁸.
- We estimate to have better sensitivity than E391a with this data set.

- KOTO experiment is dedicated to observe rare decay of $K_L \rightarrow \pi^0 \nu \bar{\nu}$ and measure its branching ratio at high sensitivity to test SM and BSM extensions.
- In 2012, all the sub-detectors were installed. And two engineer runs during 2013 January and April proves that all detectors are well understood.
- Physics run started in May, but was terminated early due to the radiation accident of the Hadron Hall on May 23rd. Accumulated POT was 1.6 ×10¹⁸. From this data set, we expect to get better sensitivity than E391a.

backup

KOTO sensitivity estimate and BG budget

	GEANT4 value	new value
K_L^0 flux/ 2×10 ¹⁴ P.O.T	$7.4 imes 10^6$	1.94×10^7
P.O.T	$1.8 imes 10^{21}$	$1.8 imes 10^{21}$
decay probability	4.0%	3.9%
geometrical acceptance	28%	27%
cut efficiency	23%	22%
acceptance loss	72%	76%
sensitivity	$2.1 imes 10^{-11}$	$1.0 imes 10^{-11}$
number of signal event	1.2	2.4

Table 7.2: Summary of the expected numbers of the signal and backgrounds.

	source	GEANT4 value	new value
signal	$K_L^0 \to \pi^0 \nu \bar{\nu}$	$1.16{\pm}0.01$	$2.39{\pm}0.03$
K_L^0 decays	$K_L^0 \rightarrow 2\pi^0$	$0.74{\pm}0.02$	$1.32{\pm}0.04$
	$K_L^0 \to \pi^+ \pi^- \pi^0$	$0.05 {\pm} 0.01$	$0.11 {\pm} 0.01$
	$K_L^0 \to \pi^{\pm} e^{\mp} \nu$	$0.04{\pm}0.01$	$0.07 {\pm} 0.04$
halo neutron	NCC- π^0	$0.05 {\pm} 0.02$	$0.05 {\pm} 0.02$
	$CV-\pi^0$	$0.04{\pm}0.04$	$0.04{\pm}0.04$
	$CV-\eta$	$0.01 {\pm} 0.01$	$0.01{\pm}0.01$
	S/N	1.25	1.49