Cosmic Frontier

Harry Nelson DPF UC Santa Cruz August 17, 2013

O.E.D.

Pronunciation: /wImp/

Etymology: Acronym < the initial letters of *w*eakly *i*nteracting *m*assive *p*article.

Particle Physics.

Any of several hypothetical subatomic particles which have relatively large mass but which interact only weakly with ordinary matter, postulated as the main constituents of the dark matter of the universe. Chiefly in *pl*.

Thesaurus » Categories »

1985 Sci. Amer. Aug. 55/1 In 1977 John Faulkner of the University of California at Santa Cruz and one of his students, Ronald
Gilliland..considered the effects of a weakly interacting massive particle (WIMP) on the flux of neutrinos by the sun.

- Cosmic Frontier Parallel Sessions
 - 26 talks by 24 speakers
 - Results, Commissioning/Operations, Projections, Ideas
- Ernest Rutherford:
 - `If your experiment needs statistics, you ought to have done a better experiment'... Over a long time ago.
 - Big data analyzed by the very skilled
- Wonderful youthful spirit... Namaste

Some themes

- WIMPs... well defined, models, lines to cross
 - Majorana or Dirac or neither?
 - Just one particle or a whole `dark sector'?
- Dark Energy... a great discovery where `lines to cross' is perhaps inappropriate
- New ideas that seek a repeat

Astrophysical Searches for Daughters from **Dark Matter Annihilation** & Related

Alex Drlica-Wagner / Fermi-LAT

Andrew Smith / Veritas

Emma Storm / Radio

FIG. 1. A 63 million volt positron $(H_{\rho}=2.1\times10^5 \text{ gauss-cm})$ passing through a 6 mm lead plate and emerging as a 23 million volt positron $(H_{\rho}=7.5\times10^4 \text{ gauss-cm})$. The length of this latter path is at least ten times greater than the possible length of a proton path of this curvature.

Positron Discovery (1932)

David Williams / CTA

Figures from Slava Bugaev

Log Mass [eV]

x, m

Matthew Wood/ CTA

Nepomuk Otte / Review

(Ellis 03) (Abdo 09) (Abramowski 11) (Abdo 09) (Abramowski 11) (Abdo 09) (Abramowski 11) 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11} E_{LIV} (GeV) VERITAS Crab PSR

Linear term:

Luigi Tibaldo / Fermi-LAT

Ackermann+ 2011 Science 334 1103

William Shepherd/ Theory

Farinaldo Queiroz / Theory

Neutrinos : Earth > Cosmos (Dark Matter : Cosmos > Earth)

The Average Energy of Disintegration of Radium E.

By C. D. ELLIS, Ph.D., Lecturer in the University of Cambridge, and W. A. WOOSTER, B.A., Charles Abercrombie Smith Student of Peterhouse, Cambridge.

(Communicated by Sir Ernest Rutherford, O.M., P.R.S.-Received August 3, 1927.)

FIG. 2. Proc. R. Soc. Lond. A 1927 117, doi: 10.1098/rspa.1927.0168, published 1 December 1927

Neutrinos : Earth > Cosmos (Dark Matter : Cosmos > Earth)

The Average Energy of Disintegration of Radium E.

By C. D. ELLIS, Ph.D., Lecturer in the University of Cambridge, and W. A. WOOSTER, B.A., Charles Abercrombie Smith Student of Peterhouse, Cambridge.

(Communicated by Sir Ernest Rutherford, O.M., P.R.S.-Received August 3, 1927.)

Volume 66B, number 2

PHYSICS LETTERS

17 January 1977

If massive leptons exist, their associated neutrinos would have been copiously produced in the early stages of the hot, big bang cosmology. These neutrinos would have contributed to the total energy density and would have had the effect of speeding up the expansion of the universe. The effect of the speed-up on primordial nucleosynthesis is to produce a higher abundance of ⁴He. It is shown that observational limits to the primordial abundance of ⁴He lead to the constraint that the total number of types of heavy lepton must be less than or equal to 5.

FIG. 2. Proc. R. Soc. Lond. A 1927 117, doi: 10.1098/rspa.1927.0168, published 1 December 1927 COSMOLOGICAL LIMITS TO THE NUMBER OF MASSIVE LEPTONS

Gary STEIGMAN National Radio Astronomy Observatory¹ and Yale University². USA

David N. SCHRAMM University of Chicago, Enrico Fermi Institute (LASR), 933 E 56th, Chicago, Ill. 60637, USA

> James E. GUNN University of Chicago and California Institute of Technology², USA

> > Received 29 November 1976

Kazuyoshi Kitazawa / Theory

Ahmed Ismail/ Theory

The phenomenological MSSM

- The full MSSM has 105 new free parameters, many of which are strongly constrained
- Impose minimal flavor violation, diagonal sparticle mass matrices with degenerate first two generations, CP conservation
- Generated random points in resulting 19-dim. space passing precision EW, flavor, DM constraints
- Produced set of ~2.2 x 10⁵ consistent models in late 2011

Omar Moreno Heavy Photon Search

experiments [1,2] has the production of the sector of the to hidden sector photons which predominantly decay to erect could naturally account for the observation [3].

Many Beyond the Standard Model theories generate extra U(1) gauge groups, and the associated gauge bosons could have masses over a very wide range. It is natural for such "heavy/dark photons" or A' to kinematically mix with the Standard Model photon though the interaction of massive fields [4]. This would induce a coupling of the A' to electric charge which is suppressed relative to the electron charge by a

factor of $\varepsilon \sim 10^{-2}$ - $10^{-12}.$

The coupling of the A' to electric charge allows for its production through bremsstrahlung, subsequently decaying to e^+e^- or $\mu^+\mu^-$ pairs. The HPS experiment will utilize a compact large acceptance forward spectrometer consisting of a silicon microstrip detector along with a lead tungstate electromagnetic calorimeter and a muon detector, to measure the invariant mass and vertex position of the A'.

O. Adriani et al. [PAMELA Collaboration], Nature 458, 607 (2009)
 M. Ackernanne et al. [Fermi LAT Collaboration], Phys. Rev. D 82, 092004 (2010)
 M. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer and N. Weiner, Phys. Rev. D 78, 015014 (2009)
 E. Hokom, Phys. Lett. B 164, 196 (1964), P. Galicon et al. (Phys. Lett. B 136 (1984), 279

man A

Signals and Backgrounds

Heavy Photon Signal

A' particles are generated in electron collisions on a fixed target by a process analogous to ordinary photon

A particles are generated in electron components on a made target by a process undergoing to do a second process bremsstrahlung. The rate and kinematics of A' radiation differ from massless bremsstrahlung in several important . The total A' production cross section when using a fix target setup is $\sigma \sim \alpha^3 Z^3 \varepsilon^3 (m_A^2)^2$ and is suppressed relative to photon bremsstrahlung by a factor $\sim (m_e)^2 \varepsilon^2 / (m_A)^2$

Searches for Direct Interactions of Dark Matter

Spin Independent, 50 GeV

Prisca Cushman / CDMS

Monica Pangilinan/ LUX-LZ

Monica Pangilinan/LUX-LZ Scaling up: The LZ Experiment

- LUX + ZEPLIN collaboration
 7.2 tonnes 370 kg liquid Xenon time projection chamber (TPC)
- detector in 8m x 6m water tank
 4850 ft underground at Homestake mine in Lead, SD
- low radioactivity Ti
- ~500 R11410 122 R8778 PMTs for detection
- PTFE reflector cage
- Thermosyphon for cooling Xe to ~170K

Addition of liquid scintillator veto outside Ti cryostats and instrument liquid Xe skin outside of field cage

Monica Pangilinan/ LUX-LZ

Direct Detection Future

Dark Energy

Beth Reid / SDSS-III BOSS

Mariana Vargas-Magaña / SDSS-III BOSS

First Reconstruction with SDSS I-II Galaxy samples DR7

Reduces error from **3.5% to 1.9%** in the measurement of the distance to z=0.35 equivalent to a survey with three times the volume of SDSS. Improves significance of the BAO feature from 3.3 sigma to 4.2 sigma.

Mariana Vargas-Magaña / SDSS-III BOSS

First Reconstruction with SDSS I-II Galaxy samples DR7

Reconstruction on BOSS DR9

Neutrino Mass from CMB Duncan Hansen

Breaking polarization into E- and B-modes, lensing has qualitatively different behaviour in polarization.

«E-mode»

«B-mode»

B modes detected!

B modes... smaller systematics

Other (<230 meV)

Marcelle Soares-Santos / DES

SV Accomplishments

- Data flowing to NCSA
- First Cut Processing
- Verified proper signal and noise levels
- Astrometric solution with 20 mas RMS
- Fixed faulty primary mirror support
- OBSTAC runs properly
- SISPI (DAQ) works, improved
- AOS control of focus and collimation
- Look Up tables for pointing
- Cross talk measured, saturation detected
- Documentation
- Quick Reduce works, enhanced
- SN fields selected, templates
- SN pipeline works
- Photometric calibration regimen in place
- Repeatability to 0.02 mag verified
- Color terms as expected (except Y)
- Mirror cooling recommissioned
- RASICAM working
- Fringing measured, stable and small
- Detector non-linearities identified
- RA damper motor recommissioned
- Vastly improved tracking
- Ghost & scattering sources identified
- Photo-z calibration fields imaged
- BCAMS operating
- ... and more ...

DES Commisioning

Observers, Eyeball Squad

Solution:

Replace broken controller for mirror support (Mamac)

Diagnosis: Unusual force on mirror

hardpoint when guider corrections jump (TCS Database)

erved in Jan-Mar

50 deg², 10 tilin

lepth

or each fil

Huan Lin / DES

Photometric Red Shift Calibration

Marcelle Soares-Santos / DES

Kyle Barbary / DES

	Dark Energy Survey	Current Major Survey (SNLS: Megacam @ CFHT)	
Number of Type Ia SNe	~3500 (Photometric typing)	~500 (spectroscopic typing)	8
Redshift range	up to z ~ 1.2 (deep z band)	up to z ~ 1.0	
Fields	10 pointings @ 3 deg ² (8 "shallow", 2 "deep")	4 pointings @ 1 deg ² (all "deep")	I
Cadence	~5 day cadence over 5 months	(similar)	
Spectroscopic Follow-up	Subset of candidates observed by 4-10m class telescopes	All SN Ia candidates confirmed at 4-10m class telescopes	

Science Verification: Supernovae

Supernova Finding

Carlos Cunha / Dark Energy Survey

Eric Suchtya / DES

Preliminary

SaWLens WL mass reconstruction

redMaPPer galaxy distribution at z=0.35

Eric Suchyta/ DES

Lensing from Magnification

Eric Suchyta/ DES

Lensing from Magnification

Trinity

Calamity Jane

Wild Bill Hickok

Martha Jane Canary

Wild Bill Hickok AI Swearengen

Voyageurs

