Top Quark and Electroweak Physics

Robin Erbacher -- UC DaviszAPS DPF Meeting

UC Santa Cruz

August 2013

Top Quark Physics

Top Discovery! Tevatron Run 1 1994-5

Top Discovery! Tevatron Run 1 1994-5

Now: Huge top sample sizes

periodic table of the particles

periodic table of the particles

How is Top Produced?

~85% **Tevatron** ~15%

~I5% LHC ~85%

How else is Top Produced?

EWK (single top)

s-channel

t-channel

associated Wt

How else is Top Produced?

EWK (single top)

s-channel

t-channel

associated Wt

New production?

How does top decay?

Dilepton

Lepton+Jets

All-hadronic

Top Pair Production

Top Pair Production

LHC is becoming a top factory

Top + Jets Production

Can use to reduce ISR/FSR uncertainty

Evidence for ttV production

SM: σ_{tty} (pTY>8 GeV)=2.1±0.4 pb LO+NLO k-factor

CMS ttH combination

Top Yukawa

Latest on ttH production

New ATLAS result, ttH, $H \rightarrow \gamma \gamma$

Large backgrounds, small signal: Need MVAs to find

2009 Tevatron observed s+t channels

See also parallel talks (H. Liu, M. Cremonessi - CDF)

Large backgrounds, small signal: Need MVAs to find

2009 Tevatron observed s+t channels

See also parallel talks (H. Liu, M. Cremonessi - CDF)

New: D0 first evidence for s-channel production

t-channel observed, Tevatron & LHC

See also parallel talk by P. Baringer

Wt production ATLAS Evidence 3.3σ

 σ_t (7 TeV) = 16.8 ± 5.7 pb SM σ_t (7 TeV) = 15.7 ± 1.2 pb

See also parallel talk by P. Baringer

Wt production ATLAS Evidence 3.3σ

CMS Observation 6.00

 σ_t (8 TeV) = 23.4 ± 5.5 pb SM σ_t (8 TeV) = 22.2 ± 1.5 pb

 σ_t (7 TeV) = 16.8 ± 5.7 pb SM σ_t (7 TeV) = 15.7 ± 1.2 pb

Ratio R_t and V_{tb}

t-channel Ratio $R_t = \sigma_t / \sigma_{tbar}$ sensitive to u/d proton content

Ratio R_t and V_{tb}

t-channel Ratio $R_t = \sigma_t / \sigma_{tbar}$ sensitive to u/d proton content

tWb coupling: $|V_{tb} \cdot f|^2 \propto \sigma_t / \sigma_{SM}$ (f=1 in SM) CMS 7 TeV: $|V_{tb}| = 1.0 \pm 0.05$ CMS 8 TeV: $|V_{tb}| = 0.96 \pm 0.08$ ATLAS 7 TeV: $|V_{tb}| = 1.0 \pm 0.05$ ATLAS 8 TeV: $|V_{tb}| = 1.0 \pm 0.1$ or $|V_{tb}| > 0.8$ @ 95% CL

See also parallel talks (P.Turner, R. Nayyar)

Resonant Production

See also parallel talks (P.Turner, R. Nayyar)

Fully merged

top jet

Resonant Production

(boosted)

See also parallel talk (M.True) on resonant $W' \rightarrow tb$ search

SM: NLO diagram interference in $q\overline{q}$.

BSM: New physics could enhance asymmetry.

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \text{ Tevatron } A_{\text{fb}}$$

 $\Delta y = y_t - y_{\bar{t}} = q_l(y_{t, lep} - y_{t, had})$

SM: NLO diagram interference in $q\overline{q}$.

BSM: New physics could enhance asymmetry.

$$A^{t\bar{t}} = \frac{N\left(\Delta y > 0\right) - N\left(\Delta y < 0\right)}{N\left(\Delta y > 0\right) + N\left(\Delta y < 0\right)}$$

 $\Delta y = y_t - y_{\overline{t}} = q_l(y_{t, lep} - y_{t, had})$

LHC A_c

 $\Delta |y| = |y_t| - |y_{\overline{t}}|$

Tevatron A_{FB} historically in tension with SM

Tevatron A_{FB} historically in tension with SM

 $\frac{d\sigma(t\overline{t}\,)}{d\cos\theta} = \sum a_l P_l(\cos\theta)$

Recent CDF study: Legendre Polynomials

Tevatron A_{FB} historically in tension with SM

 $\frac{d\sigma(t\overline{t}\,)}{d\cos\theta} = \sum a_l P_l(\cos\theta)$

Recent CDF study: Legendre Polynomials

Legendre moments consistent with SM except Ist (2.1σ): s-channel exchange of s=1 particle (axigluon or Z')

Lepton A_{FB}

$$A_{l} = \frac{N(q_{l}y_{l} > 0) - N(q_{l}y_{l} < 0)}{N(q_{l}y_{l} > 0) + N(q_{l}y_{l} < 0)}$$

Top Forward-Backward Asymmetry

A^{tt}_{FB} requires full top reconstruction.
A_l, use lepton η from W decay -clean.

• $A_{\ell} \sim (0.5) A^{tt}_{FB}$ if no t polarization.

Lepton A_{FB}

$$A_{l} = \frac{N(q_{l}y_{l} > 0) - N(q_{l}y_{l} < 0)}{N(q_{l}y_{l} > 0) + N(q_{l}y_{l} < 0)}$$

Forward-Backward Lepton Asymmetry, %	
3 jets, 1 <i>b</i> tag	DØ preliminary, 9.7fb ⁻¹ Production Level
3 jets, ≥2 <i>b</i> tags	
≥4 jets, ≥	H <mark>≥4 jets, 1<i>b</i> tag</mark> 2 <i>b</i> tags
	× ² /N.D.F.: 8.2/3 nclusive (with syst.)
S. Frixione and B.R. Webber, JHEP 06, 029 (2002)	
-10 0	10 20

Top Forward-Backward Asymmetry

- A^{tt}_{FB} requires full top reconstruction.
 A_l, use lepton η from W decay -clean.
- $A_{\ell} \sim (0.5) A^{tt}_{FB}$ if no t polarization.

CDF: $A_{FB}^{\ell} = 0.094_{-0.029}^{+0.032}$ (2 σ from SM) D0: $A_{FB}^{\ell} = 0.047 \pm 0.023 (\text{stat})_{-0.014}^{+0.011} (\text{syst})$

$$SM (mc@NLO) = 0.023 \pm 0.20$$

Lepton A_{FB}

$$A_{l} = \frac{N(q_{l}y_{l} > 0) - N(q_{l}y_{l} < 0)}{N(q_{l}y_{l} > 0) + N(q_{l}y_{l} < 0)}$$

Forward-Backward Lepton Asymmetry, %	
3 jets, 1 b tag	DØ preliminary, 9.7fb ⁻¹ Production Level
3 jet	s, ≥2 <i>b</i> tags
≥4 jets, ≥	H <mark>≥4 jets, 1<i>b</i> tag</mark> 2 <i>b</i> tags
	× ² /N.D.F.: 8.2/3 nclusive (with syst.)
S.Frixione and B.R. Webber,	
JHEP 06, 029 (2002)	
-10 0	10 20

Top Forward-Backward Asymmetry

- A^{tt}_{FB} requires full top reconstruction.
 A_l, use lepton η from W decay -clean.
- $A_{\ell} \sim (0.5) A^{tt}_{FB}$ if no t polarization.

CDF: $A_{FB}^{\ell} = 0.094_{-0.029}^{+0.032}$ (2 σ from SM) D0: $A_{FB}^{\ell} = 0.047 \pm 0.023 (\text{stat})_{-0.014}^{+0.011} (\text{syst})$

$SM (mc@NLO) = 0.023 \pm 0.20$

Effect smaller due to p-p collider. Consistent with SM, but little sensitivity: few statistics, large systematics. However... Snowmass: If 50% of systematics scale w/ statistics, HL-LHC may help.

See also parallel talks (S.Youn - D0 analysis, N. Kidonakis- other distributions)

Other Top Kinematics

plus similar result from CMS

Eg: spin correlations

Top Quark Mass

Fundamental Standard Model Parameter

Top mass history

Top Quark Mass

C. Quigg, Physics Today 50, 20 (May 2007), hep-ph/9704332, & update from private communication

Top mass history

Top Quark Mass

C. Quigg, Physics Today 50, 20 (May 2007), hep-ph/9704332, & update from private communication

Top Quark Mass

Tevatron 2013 Combo

Tevatron still most precise: 0.5% relative uncertainty.

Top Quark Mass

Tevatron 2013 Combo

Tevatron still most precise: 0.5% relative uncertainty.

Most precise single result: 0.63% relative

Top Quark Mass

Most precise single result: 0.63% relative

Top Quark Mass

Most precise single-LHC: 0.65% relative

Top Quark Mass

LHC not far behind: precision close to Tevatron

New LHC combination coming soon.
TopLHCWG... agreeing to common systematics.
Tevatron/LHC combo coming soon, too.

New Techniques: 3D fit by ATLAS

Reduces systematics by 40% over previous measurement.

Top Quark Mass

Fit to top mass, W mass, and R_{Ib} (ratio). In situ jet and b-jet energy scale calibration.

 $M_{top} = 172.3 \pm 0.23$ (stat) ± 0.27 (JSF) ± 0.67 (bJSF) ± 1.35 (syst) GeV

New Techniques: CMS b-Lifetime

$$L_{xy} = \gamma_b \beta_B \tau_B \approx 0.4 \cdot \frac{m_t}{m_B} \beta_B \tau_B$$

First used in CDF, systematics complementary (no jets). Lxy distribution gives Mtop.

 $M_t = 172.4 \pm 1.5$ (stat) ± 1.3 (syst) ± 2.6 (p_Tt) GeV

Top Quark Mass

New Techniques: CMS b-Lifetime

$$L_{xy} = \gamma_b \beta_B \tau_B \approx 0.4 \cdot \frac{m_t}{m_B} \beta_B \tau_B$$

First used in CDF, systematics complementary (no jets). Lxy distribution gives Mtop.

 $M_t = 172.4 \pm 1.5$ (stat) ± 1.3 (syst) ± 2.6 (p_Tt) GeV

Top Quark Mass

New Techniques: CMS Differential

Probe color reconnection, ISR/FSR

vacuum stability

150 MeV δ(M_H) ~ 100 MeV δ(M_t)

vacuum stability

I50 MeV $\delta(M_H) \sim 100$ MeV $\delta(M_t)$ <u>Are we measuring the pole mass</u>?

Top Quark Mass

Top mass from σ_{tt}

Compare precise σ_{tt} for different m_t to NNLO prediction ($\alpha_{s(PDG)}$).

 M_t (pole) = 176.7 ± 3.6 GeV

$M_t = 173.9 \pm 0.9 \pm 1.8 \text{ GeV}$

Top Quark Mass

What M_t do we measure?

"Endpoints" of transverse distributions:

- Can fit to shapes independent of MC/theory
- Very sensitive to M_{top}
- CMS: fit to M_{T2} , M_{WT} , $M_{b\ell}$

Top Quark Mass

Linear collider threshold scans

Analytical theory predictions. Expected precision < 100 MeV.

Snowmass top ILC white paper

"Top"-ics not covered...

- Top quark branching ratios
- W helicity in top decays: test of V-A
- Baryon number violating tops
- Studies of top kinematic distributions
- Flavor-changing neutral currents
- Rare top decays
- Top/ Anti-top mass difference
- Searches for top quark partners
- New techniques in reconstruction: boosted tops
- ... and more!

Electroweak Physics

Global Electroweak Fits

- χ^{2}_{min} 20.7 per 14 degrees of freedom
- Pulls all within 2.5σ
- Higgs mass measured to I GeV

latest from Gfitter May 2013

We'll revisit this fit later...

Global Electroweak Fits

- χ^{2}_{min} 20.7 per 14 degrees of freedom
- Pulls all within 2.5σ
- Higgs mass measured to I GeV

What next?

latest from Gfitter May 2013

We'll revisit this fit later...

Global Electroweak Fits

Precision!

Global Electroweak Fits

Precision!

Improve precision parameters: W mass, FB asymmetry (weak mixing angle)

Global Electroweak Fits

Precision!

 Improve precision parameters: W mass, FB asymmetry (weak mixing angle)

• Study W,Z thoroughly: differential distributions

Global Electroweak Fits

Precision!

 Improve precision parameters: W mass, FB asymmetry (weak mixing angle)

• Study W,Z thoroughly: differential distributions

• Precision theory & PDF constraints

Global Electroweak Fits

Precision!

Electroweak physics remains very active Improve precision parameters: W mass, FB asymmetry (weak mixing angle)

• Study W,Z thoroughly: differential distributions

Precision theory & PDF constraints

• Look for new physics -anomalous couplings

Vector Boson Production

Low-pileup data only

Vector Boson Production

ATLAS & CMS

3.5

y(Z)

3

2.5

LHCb

Measurements extended

05

e-p Z⁰ production

HERA finished data taking in 2007!

See EPS talk: Junipei Maeda

Z bosons: t-channel off-shell exchanges (small cross section)

Z bosons: t-channel off-shell exchanges (small cross section)

 15 ± 6.8 events observed: 2.3σ significance

Z bosons: t-channel off-shell exchanges (small cross section)

 15 ± 6.8 events observed: 2.3 σ significance

ZEUS Events ZEUS 496 pb⁻¹ 10 Fit $(Z^0 \text{ signal } + \text{ b.g.})$ 8 -- Fit (b.g.) $N_{obs} = 15.0^{+7.0}_{-6.4}$ 6 ce 0 80 60 100 120 40 140 $M_{jets} \ (GeV)$

 $\sigma(ep \rightarrow eZ^{0}p^{*}) = 13.0 \pm 0.06 \text{ pb}$ $\sigma(theory) = 16.0 \text{ pb}$
Diboson Production

Diboson Production

Example: ZZ Production

Anomalous Triple Gauge Boson Couplings

Precision test of the SM

Proc	I n

Coupling	Parameters	Channels
$WW\gamma$	λ_{γ} , $\Delta\kappa_{\gamma}$	WW
WWZ	$\lambda_Z, \Delta \kappa_Z, \Delta g_1^Z$	WW,WZ
$Z\gamma Z$	f_4^Z, f_5^Z	ZZ
ZZZ	$f_4^{\dot\gamma}$, $f_5^{\dot\gamma}$	ZZ

All parameters zero in SM

Anomalous Triple Gauge Boson Couplings

Precision test of the SM

Coupling	Parameters	Channels
$WW\gamma$	λ_{γ} , $\Delta\kappa_{\gamma}$	WW
WWZ	$\lambda_Z, \Delta \kappa_Z, \Delta g_1^Z$	WW,WZ
$Z\gamma Z$	f_{4}^{Z}, f_{5}^{Z}	ZZ
ZZZ	$f_4^{\dot{\gamma}}$, $f_5^{\dot{\gamma}}$	ZZ

All parameters zero in SM No evidence for aTGCs from any experiment so far

ZZ Production

Anomalous Triple Gauge Boson Couplings

Corbett et al arXiv:1304.1151

Complementary approaches to new physics using coupling deviations

Anomalous Quartic Gauge Boson Couplings BSM models (eg- extra dimensions): 10-100x cross section enhancement

Limits set by Tevatron & LHC on anomalous terms in Lagrangian.

Electroweak Precision Observables

Nice discussion in Snowmass proceedings (Kotwal, Wackeroth, et al.)

Both predicted precisely in SM. BSM predictions, too.

$$sin^2\theta_{eff}$$

$$\sin^2 \theta_{\rm eff}^f = \sin^2 \theta_{\rm W} (1 + \Delta \kappa)$$

$$q\bar{q} \to Z/\gamma^* \to e^+e^-$$

V-A nature of EWK interaction:

$$g_v^f = I_3^f - 2Q_f \sin^2 \theta_W$$
$$g_a^f = I_3^f$$

 $sin^2 \Theta_W = I - M_W^2 / M_Z^2$

$$\sin^2 \theta_{\rm eff}^f = \sin^2 \theta_{\rm W} (1 + \Delta \kappa)$$

$$q\bar{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$$

 $sin^2 \theta_{eff}$

V-A nature of EWK interaction:

$$g_v^f = I_3^f - 2Q_f \sin^2 \theta_W$$
$$g_a^f = I_3^f$$

 $\sin^2\theta_W = I - M_W^2 / M_Z^2$

$$\sin^2\theta^f_{\rm eff} = \sin^2\theta_{\rm W}(1+\Delta\kappa)$$

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

CMS: First LHC, 1.1 fb⁻¹(2011)

 3σ tension

forward-backward asymmetry

 3σ tension

$\Delta \sin^2 \theta_{\text{eff}}^l [10^{-5}]$	CDF	D0	final CDF	final CDF	final CDF
final state	e^+e^-	e^+e^-	$\mu^+\mu^-$	e^+e^-	$\operatorname{combined}$
$\mathcal{L}[\mathrm{fb}^{-1}]$	2.1	5.0	9.0	9.0	9.0 $\mu\mu + 9 e^+e^-$
PDF	12	48	12	12	12
higher order corr.	13	8	13	13	13
other systematics	5	38	5	5	5
statistical	90	80	80	40	40
total $\Delta \sin^2 \theta_{\text{eff}}^l$	92	101	82	44	41

Tevatron (CDF) A. Bodek

Snowmass proceedings (Kotwal, Wackeroth, et al.)

$\Delta \sin^2 \theta_{\text{eff}}^l [10^{-5}]$	CDF	D0	final CDF	final CDF	final CDF
final state	e^+e^-	e^+e^-	$\mu^+\mu^-$	e^+e^-	$\operatorname{combined}$
$\mathcal{L}[\mathrm{fb}^{-1}]$	2.1	5.0	9.0	9.0	9.0 $\mu\mu$ + 9 e^+e^-
PDF	12	48	12	12	12
higher order corr.	13	8	13	13	13
other systematics	5	38	5	5	5
statistical	90	80	80	40	40
total $\Delta \sin^2 \theta_{\text{eff}}^l$	92	101	82	44	41

Tevatron (CDF) A. Bodek

$\Delta \sin^2 \theta_{\rm eff}^l \; [10^{-5}]$	ATLAS	\mathbf{CMS}	LHC/per experiment		
$\sqrt{s} [\text{TeV}]$	7	7	8	14	14
$\mathcal{L}[\mathrm{fb}^{-1}]$	4.8	1.1	20	300	3000
PDF	70	130	35	25	10
higher order corr.	20	110	20	15	10
other systematics	70	181	60(35)	20	15
statistical	40	200	20	5	2
Total	108	319	75(57)	36	21

LHC conservative (optimistic)

Snowmass proceedings (Kotwal, Wackeroth, et al.)

R. Caputo

$\Delta \sin^2 \theta_{\text{eff}}^l [10^{-5}]$	CDF	D0	final CDF	final CDF	final CDF
final state	e^+e^-	e^+e^-	$\mu^+\mu^-$	e^+e^-	combined
$\mathcal{L}[\mathrm{fb}^{-1}]$	2.1	5.0	9.0	9.0	9.0 $\mu\mu + 9 e^+e^-$
PDF	12	48	12	12	12
higher order corr.	13	8	13	13	13
other systematics	5	38	5	5	5
statistical	90	80	80	40	40
total $\Delta \sin^2 \theta_{\text{eff}}^l$	92	101	82	44	41

Tevatron (CDF) A. Bodek

$\Delta \sin^2 \theta^l_{\rm eff} \; [10^{-5}]$	ATLAS	\mathbf{CMS}	LHC/per experiment		
$\sqrt{s} [\text{TeV}]$	7	7	8	14	14
$\mathcal{L}[\mathrm{fb}^{-1}]$	4.8	1.1	20	300	3000
PDF	70	130	35	25	10
higher order corr.	20	110	20	15	10
other systematics $% \left($	70	181	60(35)	20	15
statistical	40	200	20	5	2
Total	108	319	75(57)	36	21

LHC conservative (optimistic)

R. Caputo

ILC/GigaZ

Snowmass proceedings (Kotwal,Wackeroth, et al.)

$\Delta \sin^2 \theta_{\text{eff}}^l [10^{-5}]$	CDF	D0	final CDF	final CDF	final CDF
final state	e^+e^-	e^+e^-	$\mu^+\mu^-$	e^+e^-	combined
$\mathcal{L}[\mathrm{fb}^{-1}]$	2.1	5.0	9.0	9.0	9.0 $\mu\mu + 9 e^+e^-$
PDF	12	48	12	12	12
higher order corr.	13	8	13	13	13
other systematics	5	38	5	5	5
statistical	90	80	80	40	40
total $\Delta \sin^2 \theta_{\text{eff}}^l$	92	101	82	44	41

Tevatron (CDF) A. Bodek

$\Delta \sin^2 \theta_{\rm eff}^l \; [10^{-5}]$	ATLAS	\mathbf{CMS}	LHC/per experiment		
$\sqrt{s} [\text{TeV}]$	7	7	8	14	14
$\mathcal{L}[\mathrm{fb}^{-1}]$	4.8	1.1	20	300	3000
PDF	70	130	35	25	10
higher order corr.	20	110	20	15	10
other systematics	70	181	60(35)	20	15
statistical	40	200	20	5	2
Total	108	319	75(57)	36	21

LHC conservative (optimistic)

R. Caputo

$\Delta \sin^2 heta_{ m eff}^l \; [10^{-5}]$	ILC/GigaZ	TLEP(Z)
systematics	1.2	
statistical	0.5	0.2
total	1.3	

ILC/GigaZ >10x LEP/SLC precision

Snowmass proceedings (Kotwal, Wackeroth, et al.)

precision EWK observable

At tree level, M_W observable related to important EWK parameters:

$$M_W^2 = \pi \alpha_{EM} / \sqrt{2G_F \sin^2 \vartheta_W}$$

precision EWK observable

At tree level, M_W observable related to important EWK parameters:

$$M_W^2 = \pi \alpha_{EM} / \sqrt{2G_F \sin^2 \vartheta_W}$$

Radiative corrections due to quarks, Higgs loops, exotica make M_w important constraint on physics beyond the Standard Model:

precision EWK observable

At tree level, M_W observable related to important EWK parameters:

$$M_W^2 = \pi \alpha_{EM} / \sqrt{2G_F \sin^2 \vartheta_W}$$

Radiative corrections due to quarks, Higgs loops, exotica make M_w important constraint on physics beyond the Standard Model:

Example: folding in limits from direct searches, SUSY loops can contribute 100-200 MeV to M_w.

2012: CDF update last year Used three observables from muon & electrons: lepton p_T, neutrino p_T, transverse mass m_T

All combined (6 fits): M_W=80387 ± 19 MeV $P(\chi^2)=25\%$

2012: D0 update last year

Again three observables: lepton p_T, v p_T, transverse mass m_T

All 3 new fits (electron only), combined with earlier Run 2a: Mw=80375 ± 23 MeV, P(χ^2)=25%

Final Tevatron uncertainty: 9-10 MeV assuming factor 2 improvement to δPDF (helped by LHC)

ΔM_W [MeV]	CDF	D0	$\operatorname{combined}$	final CDF	final D0	$\operatorname{combined}$
$\mathcal{L}[\mathrm{fb}^{-1}]$	2.2	4.3(+1.1)	7.6	10	10	20
PDF	10	11	10	5	5	5
QED rad.	4	7	4	4	3	3
$p_T(W)$ model	5	2	2	2	2	2
other systematics	10	18	9	4	11	4
W statistics	12	13	9	6	8	5
Total	19	26(23)	16	10	15	9
Table 1-4. Current and projected uncertainties in the measurement of M_W at the Tevatron.						

Targeted final precision for LHC: δPDF factor 2 worse than Tevatron

ΔM_W [MeV]	LHC			
\sqrt{s} [TeV]	8	14	14	
$\mathcal{L}[\mathrm{fb}^{-1}]$	20	300	3000	
PDF	10	5	3	
QED rad.	4	3	2	
$p_T(W)$ model	2	1	1	
other systematics	10	5	3	
W statistics	1	0.2	0	
Total	15	8	5	

Targeted final precision for LHC: δPDF factor 2 worse than Tevatron

ΔM_W [MeV]	LEP2	ILC	ILC	LEP3	TLEP
$\sqrt{s} \; [\text{GeV}]$	161	161	161	161	161
$\mathcal{L} \text{ [fb}^{-1}\text{]}$	0.040	100	480	600	3000
$P(e^{-})$ [%]	0	90	90	0	0
$P(e^{+})$ [%]	0	60	60	0	0
systematics	70			?	?
statistics	200			2.3?	1.0?
experimental total	210	3.9	1.9	>2.3	>1.0
beam energy	13	0.8	0.8	0.8	0.1-0.8
theory	-	1.0	1.0	1.0	1.0
total	210	4.1	2.3	>2.6	>1.5

ΔM_W [MeV]	LHC			
\sqrt{s} [TeV]	8	14	14	
$\mathcal{L}[\mathrm{fb}^{-1}]$	20	300	3000	
PDF	10	5	3	
QED rad.	4	3	2	
$p_T(W)$ model	2	1	1	
other systematics	10	5	3	
W statistics	1	0.2	0	
Total	15	8	5	

Current estimates for e+eusing threshold scan, polarization (Snowmass).

LEP3/TLEP studies: projections from ILC.

Global EWK Fits

Higgs! Everyone is relieved...

http://cern.ch/Gfitter

EPJC 72, 2205 (2012), arXiv:1209.2716

Pulls from new fits: May 2013 (new Tevatron top mass)

Assume Standard Model Higgs: $M_H = 125.7 \pm 0.4 \text{ GeV}$

Precision EWK fits

(see M. Baak EPS talk)

EPJC 72, 2205 (2012), arXiv:1209.2716

Pulls from new fits: May 2013 (new Tevatron top mass)

Assume Standard Model Higgs: $M_H = 125.7 \pm 0.4 \text{ GeV}$

Black: direct measurement (data) Orange: full fit including M_H Light-blue: fit including M_H, but excluding input from the row

(see M. Baak EPS talk)

Precision EWK fits

EPJC 72, 2205 (2012), arXiv:1209.2716

Global EWK fits

(see M. Baak EPS talk)

G fitter

http://cern.ch/Gfitter

EPJC 72, 2205 (2012), arXiv:1209.2716

What does the Higgs do?

Pull values of full fit:

- No value exceeds 3
- Small pulls: accuracies exceed fit requirements.

Most affected by M_H: • Shift in M_W by 13 MeV!

(see M. Baak EPS talk)

Global EWK fits

EPJC 72, 2205 (2012), arXiv:1209.2716

Global EWK fits

Indirect W mass determination from M_H :

arXiv:1209.2716

EPJC 72, 2205 (2012),

Global EWK fits

Higgs constrains the M_t/M_W parameter space:

Impressive agreement overall

Outlook

Top quark physics has entered the realm of precision studies, providing a probe for physics beyond the SM.

Many electroweak processes, particularly involving multiboson production, are now within reach, and searches for anomalies in this sector are underway.

Fits to global EWK data with the Higgs, and with precise theory calculations, show the SM remains a consistent theory, in spite of some interesting tensions.

We can look forward to much greater precision for key electroweak observables, as well as the top mass, which may help point us toward physics beyond the SM.