

Physics using

syracuse University an impressionist look at the wonderful world of flavor physics with apologies to the people who worked hard on several intriguing topics that I am not able to cover.... so much beautiful physics so little time! Please refer to the contributions in the parallel sessions for more information and details

M. Artuso, DPF 2013, August 17, 2013

The ingredients of the Standard Model relevant to flavor physics

- □ In the Standard Model, mass arises as a dynamical coupling to the Higgs boson (Yukawa Lagrangian)
- The fields in the Yukawa Lagrangian are not mass eigenstates
- ⇒ Charged current couples the "up-type quarks" with a linear combination of "down-type" quarks
- QCD "clouds" experimental observables

$$bbservable = \sum_{i} C_{i}(\mu) ME_{i}(\mu) + O\left(\frac{\Lambda_{QCD}}{\Lambda_{EW}}\right)^{2}$$

$$UV IR < 0.01\%$$

$$non-perturbative QCD$$

$$\Rightarrow importance of lattice QCD$$

Puzzles that motivate new physics

dark matter

🗆 dark

image of bullet cluster galaxy

Hierarchy Problem: We don't understand how we get from the Planck scale of Energy ~10¹⁹ GeV to the Electroweak Scale ~100 GeV without "fine tuning" quantum corrections Baryon asymmetry of the universe

12 orders of magnitude differences not explained; t quark as heavy as Tungsten (so heavy that it deserves a talk of its own!)

Quark Mixing & CKM Matrix □ In SM charge -1/3 quarks (d, s, b) are mixed □ Described by CKM matrix (also v are mixed)

Why these values? Are the two related? Are they related to masses?

The $\alpha\beta\gamma$ triangle: triumph of the CKM picture?

- Each colored shape represents an experimental constraint
 A comparison of CKM parameters extracted from "loop" variables and "tree" variables shows slight tension
 V_{ub} inclusive used to
 - construct triangle from tree variables

The saga of the V_{ub} tension

- □ Failure of LQCD & Sum rules to predicted exclusive form-factors?
- □ Failure of the HQE to evaluate correctly the hadronic matrix element?
 - General framework: non-quantified uncertainties such as assumption of quarkhadron duality
 - Analysis specific: effects of phase space cuts introduced to suppress Cabibbo favored semileptonic decay background
- □ New physics?

$\Lambda_{\rm b}$ lifetime & HQE

$\Box V_{ub}$ inclusive relies upon HQE expansion

Experiment LHCb (2013) [J/wpK] CMS (2012) [J/\u03c6A] ATLAS (2012) [J/ψA] D0 (2012) [J/ψA] CDF (2011) [J/\u03c6A] CDF (2010) $[\Lambda_{c}^{+}\pi^{-}]$ D0 (2007) [J/ψA] D0 (2007) [Semileptonic decay] DLPH (1999) [Semileptonic decay] ALEP (1998) [Semileptonic decay] OPAL (1998) [Semileptonic decay] CDF (1996) [Semileptonic decay]

1.6

 τ [ps]

D/D are studied in final states accessible to both to achieve interference:

- GLW: CP eigenstates,
 e.g. K⁺K⁻,π⁺π⁻
- ADS: common flavor state (e.g K⁺π⁻)
- □ GGSZ: "Dalitz selfconjugate 3 body final state (e.g. K_shh)

LHCb-CONF-2013-006, arXiv:1305:2050 subm PLB

□ tree level interference of $b \rightarrow c\overline{u}s (B^{-} \rightarrow D^{0}K^{-})$ and $b \rightarrow u\overline{c}s (B^{-} \rightarrow D^{0}K^{-}) \implies$ extremely clean theoretically

Angle γ : what we know so far

EXPERIMENT	γ(°)
BaBar	68 ⁺¹⁵ -14
LHCb	67±12
BELLE	69 ⁺¹⁷ -16
UTFit	68.6±3.6
CKMFitter	68.0 ^{+4.1} -4.6

M. Artuso, DPF 2013, August 17, 2013

 $B \rightarrow D^{(*)} \tau v$

Window to new physics through tree level processes

- B-decays with τ in the final state offer possibilities to study NP effects not present in processes with light leptons.
- Popular NP test via

$$R(D) = \frac{\mathcal{B}(B \to D\tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to D\ell \overline{\nu}_{\ell})}, \quad R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to D^* \ell \overline{\nu}_{\ell})} \quad (\ell = e, \mu)$$

in order to cancel/reduce theoretical uncertainties in V_{cb} /FF.

Current status

CPV in $B_s \rightarrow J/\psi X$

- CP violation means, for example, that a B will have a different decay rate than a B
- Can occur via interference between mixing & decay
- For f =J/ψ φ (higher 8, but CP odd/even mixture need to be disentangled) or J/ψf₀ smaller yields, but purely CP odd

S-wave under Φ (mass window ±12MeV) ≈(4±2)°

Small CPV expected, good place for NP to <u>appear</u>

$$\varphi_s^{SM} \equiv -2\beta_s = -2\arg\left(-\frac{V_{ts}V_*}{V_{cs}V_*}\right) = -2^{\circ}$$

Current knowledge on $\Phi_{\rm s}$ and the ${\rm B}_{\rm s}$ triangle

Comparison with other

CMS*)

5.0

14.5K

Cms-apsbph-11-00

6

	CDF	D0	LHCb	ATLAS
∫∠ [fb ⁻¹]	9.6	8.0	1.0	4.9
# Bs→JψKK(f₀)	11K	5.6K	27.6K(7.4K)	22.7K
εD ² OS [%]	1.39±0.05	2.48±0.22	2.29±0.22	1.45±0.05
εD ² SS[%]	3.5±1.4	-	0.89±0.18	-
σ_{t} [fs]	100	100	48	100
ref	Prl 109(2012)171802	Prd 85(2012)032006	Prd87(2013)112010	Atlas- conf-2013.029

CP violation in mixing

The K unitarity triangle

Constraints from $K \rightarrow \pi \nu \bar{\nu}$

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ History

$$B(K^{+} \to \pi^{+} \nu \overline{\nu})_{\rm SM} = (7.8 \pm 0.8) \times 10^{-11}$$
$$B(K^{0}_{L} \to \pi^{0} \nu \overline{\nu})_{\rm SM} = (2.4 \pm 0.4) \times 10^{-11}$$

largest uncertainties CKM factors ⇒ precision will improve by a factor of ~ 2

Brod, Gorbahn, and Stamou, PR D 83, 034030(2011) M. Artuso, DPF 2013, August 17, 2013

Future prospects

$K \rightarrow \pi \nu \nu$ and the NP scale

Altmannshofer, ANL IF workshop

assuming 5% measurements of both modes

current situation

Scale of 100 TeV already probed by $K^+ \longrightarrow \pi^+ v \overline{v}$

Charm Mixing

- □ Various experiments have seen evidence for D°- \overline{D} ° mixing, but none with significance >5 σ .
- \Box D*+ $\rightarrow \pi^+$ D° provides an initial flavor tag
- Wrong-sign" (WS) D° can appear via mixing or doubly-Cabbibo suppressed decay (DCS).
- DCS follows ~exp(-t/ τ_{D^0}). Define R_D =DCS/(Cabibbo favored). Mixing is parameterized as x´ & y´, functions of $\Delta m \& \Delta \Gamma$.
- $\Box \text{ Measure Wrong-sign/Right-sign, R(t)= (WS/RS)} \\ R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$

Charm mixing

LHCb: no mixing excluded at 9.1 σ, systematic errors are included y'=(0.72±0.24)% x'²=(-0.9±1.3)x10⁻⁴

CPV in D-D mixing?

- □Only meson mixing generated by downtype quarks (in SUSY up-type squarks in the loop!) □ Possible connection to FCNC in top decays Uncertainty of |q/p|
 - ∼0.2⇒lots of room for new physics!

• Many NP models possible, not just Supersymmetry

Several variables can be examined, e.g. muon forwardbackward asymmetry, A_{FB} is well predicted in SM

Not all the variables are equal! The never ending struggle to tame strong interaction effects!

New observables in $B \rightarrow K^{(*)}I^+I^-$

Goal: express differential decay rate in terms of parameters that are less sensitive to the hadronic matrix element uncertainty ⇔ prevent NP from hiding under strong interaction effects

$$\frac{1}{\Gamma} \frac{\mathrm{d}^{3}(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{\mathrm{L}})\sin^{2}\theta_{K} + F_{\mathrm{L}}\cos^{2}\theta_{K} + \frac{1}{4}(1 - F_{\mathrm{L}})\sin^{2}\theta_{K}\cos2\theta_{\ell} - F_{\mathrm{L}}\cos^{2}\theta_{K}\cos2\theta_{\ell} + \frac{1}{2}(1 - F_{\mathrm{L}})A_{\mathrm{T}}^{(2)}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})}P_{\mathrm{5}}^{\prime}\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})}P_{\mathrm{5}}^{\prime}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi + (1 - F_{\mathrm{L}})A_{Re}^{\mathrm{T}}\sin^{2}\theta_{K}\cos\theta_{\ell} + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})}P_{\mathrm{6}}^{\prime}\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})}P_{\mathrm{8}}^{\prime}\sin2\theta_{K}\sin2\theta_{\ell}\sin2\theta_{\ell}\sin\phi + (S/A)_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin2\phi \right]$$

New from the press

A QCD interlude

theory perspective:

- Inttice QCD is poised to predict mass and decay properties of ordinary hadrons, but also exotica (glueballs, tetraquarks...)
- Multiquark correlations inside hadrons can have a significant and in some cases even striking impact on the hadron spectrum. We show how such correlations in general, and mesons with a dominant tetraquark content in particular, emerge holographically in the AdS/QCD framework." Forkel arXiv:1206.5745
- experimental perspective:
 - □ Nature of scalar nonet still a mystery
 - zoo of exotic X,Y,Z particles containing b and c quarks are being discovered

The nature of the σ scalar

Stone-Zhang arXiV:1305.6554

qq

Label	Mode ratio	Rate ratio	$Z^2 q\bar{q}$	Z^2 tetraquark	-
$r_{sf_0}^{0f_0}$	$\frac{\Gamma(\overline{B}{}^0 \rightarrow J\!/\psif_0)}{\Gamma(\overline{B}{}^0_s \rightarrow J\!/\psif_0)}$	$=\frac{ F_{B^0}^{f_0}(m_{J/\psi}^2) ^2}{ F_{B^0_s}^{f_0}(m_{J/\psi}^2) ^2}\frac{ V_{cd} ^2\Phi_{B^0}^{f_0}}{ V_{cs} ^2\Phi_{B^0_s}^{f_0}}$	$\frac{1}{2} \tan^2 \phi$	$\frac{1}{4}$	-
$r_{0\sigma}^{0f_0}$	$\frac{\Gamma(\overline{B}{}^0\!\!\rightarrow\!\!J\!/\!\psif_0)}{\Gamma(\overline{B}{}^0\!\!\rightarrow\!\!J\!/\!\psi\sigma)}$	$= \frac{ F_{B^0}^{f_0}(m_{J/\psi}^2) ^2}{ F_{B^0}^{\sigma}(m_{J/\psi}^2) ^2} \frac{\Phi_{B^0}^{f_0}}{\Phi_{B^0}^{\sigma}}$	$\tan^2\phi$	$\frac{1}{2}$	σ not present in
$r_{sf_0}^{s\sigma}$	$\frac{\Gamma(B^0_s{\rightarrow}J\!/\!\psi\sigma)}{\Gamma(B^0_s{\rightarrow}J\!/\!\psif_0)}$	$= \frac{ F^{\sigma}_{B^0_s}(m^2_{J/\psi}) ^2}{ F^{f_0}_{B^0_s}(m^2_{J/\psi}) ^2} \frac{\Phi^{\sigma}_{B^0_s}}{\Phi^{f_0}_{B^0_s}}$	$\tan^2\phi$	0	B _s decay if tetraquark
$r_{0\sigma}^{sf_0}$	$\frac{\Gamma(\overline{B}{}^0_s {\rightarrow} J / \psi f_0)}{\Gamma(\overline{B}{}^0 {\rightarrow} J / \psi \sigma)}$	$=\frac{ F^{J_0}_{B_g^0}(m^2_{J/\psi}) ^2}{ F^{\sigma}_{B^0}(m^2_{J/\psi}) ^2}\frac{ V_{cs} ^2\Phi^{f_0}_{B_g^0}}{ V_{cd} ^2\Phi^{\sigma}_{B^0}}$	2	2	

M. Artuso, DPF 2013, August 17, 2013

the "poster boy" for new heavy hadrons: X(3872)

Experiment	Mass[X(3872)](MeV)
CDF2	3871.61±0.16±0.19
BaBar(B ⁺)	3871.4±0.6±0.1
BaBar(B ⁰)	3868.7±1.5±0.4
D0	3871.8±3.1±3.0
Belle	3871.84±0.27±0.19
LHcb	3871.95±0.48±0.12
Average	3871.68±0.17

IVI. Artuso, DPF 2013, August 17, 2013

Belle: 927 fb⁻¹ of ISR data at Y(nS) energy Phys.Rev.Lett. 110 (2013) 252002 Mass = (3894.5±6.6±4.5) MeV Width = (63±24±26) MeV Fraction = (29.0±8.9)% (stat. error only) BES-III: 525 pb⁻¹ @ Y(4260) peak energy

Phys.Rev.Lett. 110 (2013) 252001

- Mass = (3899.0±3.6±4.9) MeV
- Width = (46±10±20) MeV
- Fraction = (21.5±3.3±7.5)%

LHCb

Future prospects

LFV in muon decays

Example: MEG experiment using stopped muons at PSI, current upper limit < 5.7x10⁻¹³ at 90% CL

M. Artuso, DPF 2013, August 17, 2013

Future prospects

Experiment	location	Channel	Sensitivity
mu2e	FNAL	μN→eN	~10 ⁻¹⁷
comet	j-park	µN→eN	~10 ⁻¹⁵
mu3e	PSI	µ→eee	~10 ⁻¹⁶
MEG-UP	PSI	μ→еγ	~10 ⁻¹⁴
GM2	FNAL	Da _μ	(xxx±34)x10 ⁻¹⁵
LHCb Upgrade	CERN	τ→μμμ	~10-9
Belle II	KEK	τ→μγ	~10-9

 $B_{(s)}$ -•eμ

Cast stringent limits on Pati-Salam leptoquark mass (formalism by Valencia-Willenbrock PRD 50 (1994) 6843)

Conclusions

- □ As the new physics scale is pushed up, the flavor structure is less bound to conform to the MFV ansatz
- □ Flavor measurements can probe multi-TeV new physics with SM flavor structure and 100–1000 TeV new physics with generic flavor structure
- New physics is proving to be elusive: we need to cast a wide net!
- the LHCb upgrade and Belle II will cast a broad net to capture new physics in beauty and charm

□ Rare K, µ decay experiments will provide complementary information

If we pursue this wonderful and diverse program, a beautiful picture will emerge from the ensemble of these coarse brushstrokes

Sensitivity of the upgraded LHCb experiment to key observables

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [137]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [213]	0.045	0.014	~ 0.01
	$a^s_{ m sl}$	6.4×10^{-3} [43]	$0.6 imes10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	—	0.17	0.03	0.02
penguins	$2\beta_s^{\mathrm{eff}} \left(B_s^0 ightarrow K^{*0} ar{K}^{*0} ight)$	—	0.13	0.02	< 0.02
	$2\beta^{\mathrm{eff}}(B^0 o \phi K^0_S)$	0.17 [43]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	—	5%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [67]	0.025	0.008	0.02
penguins	$s_0 A_{ m FB}(B^0 ightarrow K^{*0} \mu^+ \mu^-)$	25% [67]	6%	2%	7~%
	$A_{ m I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$	0.25 [76]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25~% [85]	8%	2.5%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o \mu^+\mu^-)$	1.5×10^{-9} [13]	$0.5 imes 10^{-9}$	$0.15 imes 10^{-9}$	$0.3 imes 10^{-9}$
penguins	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100~\%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma ~(B ightarrow D^{(*)}K^{(*)})$	$\sim 10 12^{\circ} \ [243, 257]$	4°	0.9°	negligible
${ m triangle}$	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$eta \left(B^0 ightarrow J/\psi \; K^0_{ m s} ight)$	0.8° [43]	0.6°	0.2°	$\mathbf{negligible}$
Charm	A_{Γ}	2.3×10^{-3} [43]	0.40×10^{-3}	0.07×10^{-3}	_
$C\!P$ violation	$\Delta \mathcal{A}_{C\!P}$	2.1×10^{-3} [18]	$0.65 imes 10^{-3}$	$0.12 imes 10^{-3}$	_

Implications of LHCb measurements and future prospects, LHCB-PAPER-2012-031

	Observable	Expected th.	Expected exp.	Facility
from Tom Browder		accuracy	uncertainty	
	CKM matrix			
Siac summer institute	$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory
	$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II
	$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
	$sin(2\phi_1) [e\bar{c}K_S^0]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb
	ϕ_2		1.5°	Belle II
	ϕ_2	***	3°	LHCb
	CPV			
	$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb
	$S(B_s \rightarrow \phi \phi)$	**	0.05	LHCb
	$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb
	$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II
	$S(B_d \rightarrow K^*(\rightarrow K^0_S \pi^0)\gamma))$	***	0.03	Belle II
	$S(B_s \rightarrow \phi \gamma))$	***	0.05	LHCb
	$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II
	A_{SL}^{d}	***	0.001	LHCb
	A_{SL}^s	***	0.001	LHCb
	$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II
	rare decays			
	$\mathcal{B}(B \to \tau \nu)$	**	3%	Belle II
	$B(B \rightarrow D\tau \nu)$		3%	Belle II
	$\mathcal{B}(B_d \rightarrow \mu\nu)$	**	6%	Belle II
	${\cal B}(B_s o \mu \mu)$	***	10%	LHCb
	zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb
	$\mathcal{B}(B \to K^{(*)}\nu\nu)$	黄素素	30%	Belle II
	$\mathcal{B}(B \rightarrow s\gamma)$		4%	Belle II
	$\mathcal{B}(B_s \rightarrow \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)
	$\mathcal{B}(K \to \pi \nu \nu)$	**	10%	K-factory
	$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory
	charm and τ		0	
	${\cal B}(au o \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
	$ q/p _D$	***	0.03	Belle II
	$arg(q/p)_D$	***	1.5°	Belle II