Tests of Lorentz Invariance Violation with Gamma Rays

Based on a white paper for the Snowmass process: arXiv:1305.0264

An overview of present limits

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics Georgia Institute of Technology

Why test LIV?

- Because of its fundamental nature
- Probe physics at Planck energy (10¹⁹ GeV):
 - Microscopic structure of space time
 - Physics beyond the standard model

Finding LIV is evidence for new physics

A whole Zoo of Possibilities where LIV could manifest

- Energy dependent dispersion of speed of light
- Polarization measurements
- Accelerator experiments
- Time of flight
- Birefringence
- Threshold Effects

Many complementary approaches

Here:

How astrophysics observations in the very-high-energy gamma-ray band constrain LIV.

Gamma-Ray Instruments

Fermi-LAT

Cherenkov telescopes e.g. VERITAS and CTA

Water Cherenkov detectors HAWC

VERITAS

- Operating since Fall 2007
- **Energy range**: ~100 GeV to several 10 TeV (~75 GeV after PMT upgrade in 2012)
- Angular resolution: ~0.1° (energy dependent)
- **Energy resolution:** 15% (energy dependent)
- **Systematic uncertainties:** Energy ~20%; Spectral index ~0.2
- Sensitivity: 1% Crab Nebula flux in <30 hours

The Cherenkov Telescope Array

~50 Cherenkov telescopes

- three different telescope sizes
- one northern one southern site planned 10-14

Energy range: ~20 GeV to ~100 TeV

Expected performance @ 1 TeV:

Tenfold better sensitivity than VERITAS Angular resolution: 0.05 degrees Energy resolution: 10% Field of View: 8 degrees Repointing: 60 s (goal)

Differential Flux E² dN/dE (erg cm² s⁻¹) Crab Nebula 10⁻⁹ Synchrotron 10⁻¹⁰ 10 yrs (inner Galaxy) Inverse Compton 10-11 H.E.S.S. - 100 hrs 10-12 LAT - 10 yrs (extragalactic) CTA - 100 hrs 10-13 10² 10^{3} 10^{4} 10⁵ 10⁶ 10⁷ 10⁸ Photon Energy (MeV)

CTA is in its prototype stage

Planned US contribution:

36 Schwarzschild-Couder Telescopes

-> Factor three improvement in sensitivity

Nepomuk Otte

Water Cherenkov Detector

Under construction in Mexico @ 4,100 m

1/3 complete, completion in 2014

15 times more sensitive than Milagro

Threshold Effects

Stecker, Glashow (2001)

Result from max velocity for electrons c being different from photons c

$$c_{\rm e} \equiv c_{\gamma}(1+\delta), \quad 0 < |\delta| \ll 1$$

c_e<**c**

- Decay of photon into e+/e- pair possible
- -> stringent constraints from 50 TeV gamma rays observed from Crab Nebula

$$E_{\rm max} = m_{\rm e} \sqrt{2/|\delta|} \qquad \longrightarrow \qquad \delta < 2 \times 10^{-16}$$

c_>**c**

- Maximum electron energy limited by vacuum Cherenkov radiation $\delta < 1.3 \times 10^{-13}$ (from max observed electron energies in CR spectrum) $\delta < 6 \times 10^{-20}$ (from April 2011 Crab flare at 400 MeV, Stecker (2013))
- Threshold for pair production increased -> lower gamma-ray opacity from EBL absorption

Constrained from AGN observations in TeV (20 TeV, Mkn 501)

 $\delta < 2(m_{\rm e}/E_{\gamma})^2 = 1.3 \times 10^{-15}$

Energy dependent Dispersion in Photon Sector

Arrival time differences (**Δt**) become noticeable for large distances **d** and high photon energies **E**

Testing the Speed of Light in Gamma Rays

Advantages:

- Photons with the highest possible energies
- Astronomical, cosmological distances

Challenges:

Distance

GRB

- Limited sample
- Not reproducible (AGN, GRB)
- Unknown source physics

Different ways of testing and possibly detecting LIV is the way to go to overcome challenges

Nepomuk Otte

LIV Test with Pulsars

Detection of the Crab pulsar above 100 GeV with VERITAS

- Peaks at 100 MeV (Fermi) and 120 GeV (VERITAS) line up $\Delta t_{95\%} < 1.65 \cdot \delta \cdot P/\sqrt{2} < 100 \,\mu {
 m s}$
- Linear: E_{LIV} > 3x10¹⁷ GeV
- Quadratic: E_{LIV} > 7x10⁹ GeV

LIV tests with pulsars are reproducible and source effects can be disentangled from propagation effects

Improved limits (factor 10) with more sensitive observations:

• Deeper observations: VERITAS

Georgia

- Higher sensitivity instruments: **CTA**
- Detection of other pulsars in the VHE band: VERITAS, CTA

An Overview over various Limits

Quadratic term:

Linear term:

LIV Tests with AGNs

Short time scale TeV gamma-ray window opened with recent generation of IACT: H.E.S.S., VERITAS, and MAGIC

Shorter timescales possible? -> need CTA More statistics (detections) -> VERITAS, CTA Georgia

Dhvai

ollege of Science

PKS 2155-304 ▶ z = 0.116 July 28, 2006 flare Flaring timescale ~min Linear: E_{11V} > 2.1x10¹⁸ GeV \blacktriangleright Quadratic: $E_{IIV} > 6.4 \times 10^{10} \text{ GeV}$

The most constraining limits on the quadratic term will come from future AGN observations (> factor 50)

An Overview over various Limits

Quadratic term:

Linear term:

LIV Tests with GRBs

GRB 090510

► z = 0.903

- Timescale ~seconds
- Linear: E_{11V} > 1.5x10¹⁹ GeV

 \blacktriangleright Quadratic: $E_{IIV} > 3.0 \times 10^{10} \text{ GeV}$

Need:

More sensitivity at highest gamma-ray energies

An Overview over various Limits

Quadratic term:

Linear term:

GRB Observations with CTA and HAWC

No GRB detected in gamma-rays > 100 GeV

H.E.S.S., MAGIC, and **VERITAS** have active GRB groups

But we know that GRB emit up to 126 GeV (GRB 130427A)

Big improvement with CTA/HAWC -> Upper limit on detection rate is a few per year (uncertain due to unkown source physics) HAWC Collaboration. Astropart.Phys. 35. (2012) 641 Taboada & Gilmore arXiv:1306.1127 CTA Consortium Astropart. Phys. 43. (2013) 252-275; Exp. Astr. 35, 3, 413-457

A complementary approach to VHE GRB observations

СТА	HAWC
Long GRB	Short GRB
afterglow	prompt emission

CTA and HAWC will probe LIV with GRB detections far beyond the Planck scale (linear term)

Nepomuk Otte

Source intrinsic effects the ultimate hurdle?

- **M**rk 501
- ▶ July 9, 2005 flare
- ▶z = 0.034

Georgia

- Delay observed between 150 GeV and 1 TeV (2.5 sigma)
- Linear: E_{LIV} > 2.1x10¹⁷ GeV
- Quadratic: E_{LIV} > 2.6x10¹⁰ GeV

How to distinguish between source and propagation effects?

Answer: Search for redshift dependence

-> requires large number of detected flaring AGN, GRB, pulsars

MAGIC Collaboration, Astrophys.J.669:862-883,2007

Prospects of doing LIV Tests with gamma-rays

Only a handful of constraining observations so far

Ten times more sources will have a significant impact but needs ten times more sensitive instruments (VERITAS -> CTA, HAWC)

Source effects could hide LIV effects

Quadratic term not well constrained but could be dominating term in LIV

Reaching higher energy is more important than distance -> ground based gamma-ray instruments preferred: VERITAS, CTA, HAWC

Best available limits already come from IACT like VERITAS

For the upper end of predicted range expect similar rate of detecting GRB with CTA/HAWC than with Fermi-LAT but at higher energies (factor 10 or more)

CTA, HAWC:

Transitioning from individual source studies to population studies for LIV

