Search for low mass Higgs at BABAR

Rocky So

University of British Columbia, Canada Representing the *BABAR* Collaboration DPF UC Santa Cruz, Aug 15th, 2013

Possibility of a CP-odd light Higgs A⁰

- A light Higgs boson, with quantum numbers J^{PC}=0⁻⁺, is predicted in extensions of the Standard Model, such as the Next-to-Minimal Supersymmetric Standard Model
 - R. Dermisek and J. F. Gunion, "New constraints on a light CP-odd Higgs boson and related NMSSM ideal Higgs scenarios", Phys. Rev. D 81, 075003 (2010).
- Such a Higgs with a mass < 2m_b is not excluded from LEP constraints

NMSSM Parameter Space

- $BF(\Upsilon(1S) \rightarrow \gamma A^0)$ depends on nonsinglet fraction
- High mass Higgs very difficult to exclude

BABAR light Higgs searches

Presented in DPF 2011		
Υ (2,3S) → γ A ⁰ ; A ⁰ → μ ⁺ μ ⁻	PRL 103, 081803 (2009)	
Υ (3S) → γ A ⁰ ; A ⁰ → τ ⁺ τ ⁻	PRL 103, 181801 (2009)	
$\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow \text{invisible}$	PRL 107, 021804 (2011)	
$\Upsilon(2,3S) \rightarrow \gamma A^0; A^0 \rightarrow hadrons$	PRL 107, 221803 (2011)	
Today's talk		
Υ (1S) → γ A ⁰ ; A ⁰ → μ ⁺ μ ⁻	PRD 87, 031102(R) (2013)	
Υ (1S) → γ A ⁰ ; A ⁰ → τ ⁺ τ ⁻	arXiv:1210:5669	
$\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow gg \text{ or } s\bar{s}$	PRD 88, 031701(R) (2013)	

The BABAR Experiment

Dataset

- 122M Y(3S) and 99M Y(2S)
 - 30/fb at 10.35GeV e⁺e⁻ center of mass energy 14/fb at 10.02GeV
 - 2.6/fb at 10.32GeV1.4/fb at 9.99GeV
- 5M $\Upsilon(1S)$ by tagging dipions $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ 18M $\Upsilon(1S)$ by tagging dipions $\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$

Dipion tagging: recoil mass

- Removes continuum background and a clean $\Upsilon(1S)$ sample remains
- $M_{recoil}^2 = M_{Y(2S)}^2 + M_{\pi\pi}^2 2M_{Y(2S)}E_{\pi\pi}$ • Select on recoil mass

sides

$\Upsilon(1S) \rightarrow \gamma A^0$; $A^0 \rightarrow gg \text{ or } s\bar{s}$

- Fully reconstruct gg using 26 channels
- Fully reconstruct ss using the subset that contains 2 or 4 kaons
- Require the hadronic system and a photon to be consistent with the mass of an Y(1S)

#	Channel	# Channel
1	$\pi^+\pi^-\pi^0$	$14 \ K^+ K^- \pi^+ \pi^-$
2	$\pi^+\pi^-2\pi^0$	$15 \ K^+ K^- \pi^+ \pi^- \pi^0$
3	$2\pi^+2\pi^-$	$16 \ K^{\pm}K^{0}_{S}\pi^{\mp}\pi^{+}\pi^{-}$
4	$2\pi^+2\pi^-\pi^0$	$17 \ K^+K^-\eta$
5	$\pi^+\pi^-\eta$	$18 \ K^+K^-2\pi^+2\pi^-$
6	$2\pi^+2\pi^-2\pi^0$	$19 \ K^{\pm}K^{0}_{S}\pi^{\mp}\pi^{+}\pi^{-}2\pi^{0}$
7	$3\pi^+3\pi^-$	$20 \ K^+ K^- 2 \pi^+ 2 \pi^- \pi^0$
8	$2\pi^+2\pi^-\eta$	$21 \ K^+ K^- 2 \pi^+ 2 \pi^- 2 \pi^0$
9	$3\pi^+ 3\pi^- 2\pi^0$	22 $K^{\pm}K^{0}_{S}\pi^{\mp}2\pi^{+}2\pi^{-}\pi^{0}$
$_{10}$	$4\pi^+4\pi^-$	$23 \ K^+K^-3\pi^+3\pi^-$
11	$K^+K^-\pi^0$	$24 2K^+ 2K^-$
12	$K^{\pm}K^0_S\pi^{\mp}$	$ig 25 par{p}\pi^0$
13	$K^+K^-2\pi^0$	$26 \ p \bar{p} \pi^+ \pi^-$

$\Upsilon(1S) \rightarrow \gamma A^0$; $A^0 \rightarrow gg \text{ or } s\bar{s}$

Branching Fraction Upper Limits

Our limits excludes some NMSSM parameters space for A⁰ mass less than τ⁺τ⁻

Thick maroon line = approximate prediction

Scan in 5MeV/c² steps

Aug 15th, 2013

Υ (1S) → γA^0 ; $A^0 \rightarrow \tau^+ \tau^-$

- Select tau pair events by using: ee, eµ, eπ, µµ, µπ
- Search for Higgs in the m_{χ}^2 spectrum

$$m_X^2 = (P_{e^+e^-} - P_{\pi\pi} - P_{\gamma})^2$$

• The photon is mono-chromatic

Υ (1S) → γ A⁰; A⁰ → $\tau^+\tau^-$

- Used two mass regions, so two sets of selection criteria
- Fit the largest upward fluctuation
- 7.5% of pseudo-experiments have a 3.0σ+ fluctuation of local significance

Aug 15th, 2013

Rocky So

$$\Upsilon$$
(1S) → γ A⁰; A⁰ → $\mu^+\mu^-$

• Search for the Higgs in m_{red} spectrum

$$m_{\rm red} = \sqrt{m_{\mu^+\mu^-}^2 - 4m_{\mu}^2}$$

- Simplifies the fitting procedure for Higgs mass close to $\mu^+\mu^-$

Υ (1S) → γA^0 ; A^0 → $\mu^+\mu^-$

- Unbinned max likelihood fit to highest upward fluctuation
- Using pseudo experiments, 18.1% probability of observing a 3.62σ+ fluctuation of local significance

Combine with previous results on $\Upsilon(2S,3S) \rightarrow \gamma A^0; A^0 \rightarrow \mu^+\mu^-$

Previous results: PRL 103, 081803 (2009)

$$\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^0)}{\mathcal{B}(\Upsilon(nS) \to l^+ l^-)} = \frac{f_{\Upsilon}^2}{2\pi\alpha} \left(1 - \frac{m_{A^0}^2}{m_{\Upsilon(nS)}^2} \right)$$

f_Y = effective Yukawa coupling

17

Parameter space excluded by data

Summary and Outlook

- BABAR has seen no evidence for a CP-odd light Higgs boson
- We exclude some NMSSM parameter space
 Well exclude m_{A0} < 7.5GeV/c²
- Analyses searching for A⁰ decaying into γγ or cc are in progress

Extra Slide

