Experience Running an Analysis Cluster in an Academic Cloud

Peter Onyisi, Crystal Riley

DPF, 15 August 2013
Cloud Computing

What is a Cloud?

• Let's go with “computing services with uniform interface made available to a broad community’’
 – internal components abstracted

• Different types often referred to as “X as a service”
 – Storage as a Service: Dropbox, Amazon S3
 – Software as a Service: Gmail, Microsoft Office 365
 – Infrastructure as a Service (virtual machines on abstract hardware): Amazon EC2, Openstack, Eucalyptus, Nimbus, ...
 – Platform as a Service: LHC Computing Grid
Why are (IaaS) Clouds Interesting?

- User can create any base image (OS, loaded software, network configurations...) they want
 - replicated across multiple virtual machines
 - trivial rollback to known good version
 - easy deployment of changes

- Less concern about hardware management and lifecycles
 - (of course assuming others are running your cloud for you)

- Potential sharing of resources with others: run VMs only when needed
 - no contention over software configuration!
Our Use Case

- UT-Austin has no centralized HEP computing; sysadmin resources very stretched
 - workstations somewhat heterogeneous (even with Puppet, etc.)
- Investment in hardware will be obsolete (and fall out of warranty) within a few years
- Choice of being too small to handle peak loads, or so large that resources usually idle

Can we have CPU on demand with completely controlled and homogeneous software and configuration?

Yes, with Infrastructure as a Service.
Clouds at UT-Austin

- “Enterprise” cloud (VMWare); not intended for dynamic loads
 - also, $$$$

- Research cloud (FutureGrid) is part of NSF XSEDE
 - testbed for high performance cloud research
 - UT site (Alamo) is administered by the Texas Advanced Computing Center (TACC)
 - can compare the performance of VMs and bare metal on identical physical nodes
 - also, free
Other Work

- CERN's interactive linux cluster recently switched to all virtual machines!
- Large research effort within ATLAS, other experiments to use clouds to top up capacity
 - access (and pay for) resources only when needed
 - in ATLAS, effort focused on commercial clouds and CERN infrastructure, some work with FutureGrid
 - More focused on VMs as part of ATLAS production system rather than generic batch system nodes
Overall Architecture

Firewalls are a complication...

- Workstation NAS
- User @ Workstation
- TACC Alamo login node
- Compute instance
- Compute instance
- Storage instance (not yet)
- NFS
- Service node (Condor, HTTP proxy, xrootd for local files) *Hosted in UT enterprise cloud*

- ATLAS Grid data (via FAX)

- Job submission via Bosco

- cluster startup over ssh

- firewalls

Condor
Alamo IaaS Stacks

- Alamo offers **OpenStack** and **Nimbus** stacks
- Both use KVM to actually run the VM, images incompatible with other FutureGrid sites (which use Xen)
- Most of our effort is on OpenStack: tools more transparent than Nimbus

<table>
<thead>
<tr>
<th>Feature</th>
<th>OpenStack</th>
<th>Nimbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon EC2 API</td>
<td>Yes</td>
<td>“Yes” (optional)</td>
</tr>
<tr>
<td>Block persistent storage</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Object persistent storage</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Contextualization</td>
<td>Amazon-like user-data</td>
<td>Nimbus-specific broker</td>
</tr>
<tr>
<td>Default public IPs</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
VM Images

- CentOS 5.9 images made with Boxgrinder: http://boxgrinder.org/
 - in fact, built with Boxgrinder virtual appliance (build VM image in VM); build is < 10 min
- Key ingredient: CVMFS to provide access to ATLAS software stack
 - images are configured to use our local (always on) HTTP cache, so we're not re-downloading everything from CERN all the time
- ATLAS DB access through Frontier, again through local cache
- Other software as required
Starting the Batch System

- We use Condor as the batch system
- We constantly run a Condor scheduler outside the cloud
- When VMs boot, they start local Condor daemons and register job slots with the main scheduler
 - dynamic handling is automatic; clean shutdown of VMs means slots are properly removed from scheduler
- We find our OpenStack instances boot much faster than Nimbus ones (< 1 min vs minutes)
 - probably because the Nimbus installation does not support the QCOW2 image format, so we use gzipped RAW images
Submitting a Job

• We use Bosco: http://bosco.opensciencegrid.org/
 – Bosco creates a local Condor cluster that will submit jobs to other batch systems on your behalf (Condor, SGE, PBS, LSF...)
 – We submit a Condor job to the Bosco queue (along with necessary inputs); job is sent to remote worker node
 – Outputs are copied back via Condor (heavy reliance on Condor's file transfer mechanisms)
 – No significant latency from Bosco seen
Data

- So far we are discussing a “diskless” Tier-3
 - clouds generally do not have huge block storage available (Alamo limits us to 1TB)
 - they can have large object storage (like Amazon S3) but typically this doesn’t match well to direct use in ROOT

- Access to experiment data planned through wide area network xrootd
 - to work with Snowmass Energy Frontier Delphes ROOT files we used xrootd to Nebraska-Lincoln
 - Plan to use ATLAS Federated xrootd for ATLAS data

- Local storage (shared with user workstations): access through xrootd bridge
Tuning

- Virtual machines add extra tuning complications: *host*, *hypervisor*, and *guest* all need to be tuned

- e.g. networking:
 - host needs good performance
 - hypervisor/host kernel need to have paravirtualization enabled
 - guest needs to use drivers for paravirtual device

The following network comparison is based on the current Alamo configuration. Compute nodes have 1 Gbps links, I/O speeds tested to other UT machines:

<table>
<thead>
<tr>
<th></th>
<th>Bare metal</th>
<th>Nimbus</th>
<th>OpenStack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paravirtualized?</td>
<td>N/A</td>
<td>No (emulated NIC)</td>
<td>Yes (virtio)</td>
</tr>
<tr>
<td>Traffic Shaping?</td>
<td>No</td>
<td>No</td>
<td>Yes?</td>
</tr>
<tr>
<td>Peak network I/O per node</td>
<td>113 MB/s</td>
<td>~ 40 MB/s</td>
<td>11.2 MB/s (!)</td>
</tr>
</tbody>
</table>
Exercising the System

- We used the cloud cluster for analysis of fast simulation for Snowmass
 - used OpenStack configuration as it was ready
- Biggest limitation was networking on our side
 - working with cloud sysadmins to understand this
- Some instability in the VMs seen (random reboots)
 - proved impossible to reproduce
- Condor and Bosco worked well
Future Directions

- Explore most efficient configuration for cluster
 - can tune number of cores/memory/local disk per instance
- Explore best interface to data
 - will federated xrootd be sufficient?
- Automated start/stop of cluster
 - Cloud Scheduler?
- Explore possibility of long term production system as a resource for UT