Muon g-2 at Fermilab: Probing for BSM Physics

Brendan Kiburg, Fermilab DPF UC Santa Cruz Physics Beyond the Standard Model August 16, 2013

The E989 collaboration

The Physics of Muon g-2

Experimental Technique

Fermilab Muon g-2

The Ring Transport

Topics

8/16/13 • 3

The Physics of Muon g-2

Experimental Technique

Fermilab Muon g-2

The Ring Transport

The Magnetic Moment

$$\vec{\mu} = g \; \frac{q}{2m} \vec{S}$$

 Dirac theory of charged, spin ½ elementary point particle:

The Magnetic Moment

$$\vec{\mu} = g \; \frac{q}{2m} \vec{S}$$

• Dirac theory: $g \equiv 2$

• $g = 2 \rightarrow g = 2 + g^{QED(lo)}$

Add up all SM diagrams...

Anomalous magnetic moment: $a_{\mu} = (g_{\mu}-2)/2$

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{QCD}$$

Kiburg, DPF UCSC

- Ingredients:
 - Experimental determination:

$$R = \frac{\sigma_{total}(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

• Dispersion relation

$$a_{\mu}^{HVP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \frac{R(s)K(s)}{s^2}$$

- $\delta a_{\mu}^{HVP} \sim 0.36$ part-per-million
- Pending Improvements:
 - Data from BaBar, KLOE, BES-III...
 - Parallel lattice QCD efforts
 - Preliminary IQCD results match

- Ingredients:
 - Experimental determination:

$$R = \frac{\sigma_{total}(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

• Dispersion relation

$$a_{\mu}^{HVP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \frac{R(s)K(s)}{s^2}$$

- $\delta a_{\mu}^{HVP} \sim 0.36$ part-per-million
- Pending Improvements:
 - Data from BaBar, KLOE, BES-III...
 - Parallel lattice QCD efforts
 - Preliminary IQCD results match

- More complicated
 - Not expressed in terms of experimental quantities
 - Uncertainties are modeldependent
 - $\circ \delta a_{\mu}^{HLBL} \sim 0.22 \text{ part-per-million}$
- Early lattice calculations
 - Appear promising; results pending
 - Will require significant computing resources
 - Could encounter complications

μ

E821 result hints at BSM physics

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{QCD}$$

$$a_{\mu}^{\text{Expt.}} - a_{\mu}^{\text{SM}} = (260 \pm 78) \times 10^{-11}$$
 (3.3 σ)

$$a_{\mu}^{Expt.} = a_{\mu}^{SM} + a_{\mu}^{New Physics}$$

- New E989 experiment will reduce experimental uncertainty by a factor of 4 to 16 x 10⁻¹¹ (0.14 ppm)
- If current discrepancy remains this would yield $>5\sigma$
- Together with theory improvements could give $>8\sigma$

BSM: SUSY, Dark Photons, ... ?

Suppose a dark photon, A'

- Mediates a new force
- Weakly coupled to charged matter
- Kinetic mixing with the photon with strength ε via:

our photon γ \sim \sim A' "heavy photon"

• If $m_{A'} \sim 1 \text{MeV} - 1 \text{GeV}$ and this dark photon can decay to some light dark matter pair $(2 m_{\chi} < m_{A'})...$

The Physics of Muon g-2

Experimental Technique

Fermilab Muon g-2

The Ring Transport

Muons in a storage ring

1. Start with polarized muon beam (from pion decay)

Storage Ring

Need to contain beam

Electrostatic quadrupoles

Muons see E field as a B field in their rest frame

$$\vec{\omega}_{a} = \frac{e}{mc} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \left(\vec{\beta} \times \vec{E} \right) \right]$$

• Choose
$$\gamma = 29.3$$

(p_µ = 3.09 GeV/c)

• E-field contribution vanishes

Muons in a storage ring

$$\omega_a = e/m a_\mu B$$

Measuring the anomalous moment \mathbf{a}_{μ} requires both

1. the spin precession frequency ω_a

- Polarized muons from pion decay
- Muon decay self-analyzing : Higher energy positrons emitted preferentially in direction of muon spin

Muons in a storage ring $\omega_a = e/m a_\mu B$ Measuring the anomalous moment \mathbf{a}_{μ} requires both the magnetic field B 2. vertical distance (cm) 1.5 360 fixed NMR probes 0.0 0.0 Rails -0.5 0.5 1.5 0.5 -4 -3 -2 -1 0 radial distance (cm) Antifictal Anticle of the state of the second s Measure field without muon beam 17 NMR probes on trolley to Monitor field with fixed probes map 6000 azimuthal locations

Kiburg, DPF UCSC

Extract field experienced by muons

The Physics of Muon g-2

Experimental Technique

Fermilab Muon g-2

The Ring Transport

Goal: 4x improvement in $\delta a_{\mu}^{exp} \rightarrow 16 \times 10^{-11}$ (0.14 ppm)

- \checkmark Transport storage ring to Fermilab
- 1. Accelerator upgrades
 - Brookhaven experiment ended statistics-limited
 - Factor 20 increase in statistics at Fermilab (0.1 ppm)
 - Synergetic developments with mu2e experiment
- 2. Improve ω_a systematics (0.07 ppm)
 - Low-mass tracker to measure decay positron trajectories
 - Segmented calorimeter
- 3. Improve B-field systematics (0.07 ppm)
 - Better temperature control, B-field stability
 - Better shimming kit and modeling to improve azimuthal uniformity

Upgrade to infrastructure

Some Examples :

- More frequent proton batches
- Longer decay channel for pions, can separate hadronic background

Calo: Segmented PbF₂ Cerenkov with SiPM

Size	2.5 x 2.5 cm
Thickness	$14 \text{ cm} (> 15 \text{ X}_0)$
Segmentation	6 x 9
Radiation length	0.93 cm
Moliere radius R _M	2.2 cm
Moliere radius R_M (Cerenkov)	1.8 cm

- PbF2 is dense
- Segmentation helps with pileup
- SiPM operate in magnetic fields
- Need very stable bias voltage

- Beam Tests
 - Fermilab 2012
 - SLAC 2014

Improvements for measuring the B field in E989

- **Refurbish** most of the existing NMR probes and equipment
- Add full waveform digitization of NMR signal
- Improve homogeneity of field with passive and active shims
- Better temperature control in new building

OPERA-2D simulation

Kiburg, DPF UCSC

The Physics of Muon g-2

Experimental Technique

Fermilab Muon g-2

The Ring Transport

The delicate requirements

- Largest SC coil by factor 10 in 1990s
- **Continuous winding** around 50 ft diameter
- Transporting much more cost effective than rebuilding

Shear tests + calculations divided by a safety factor set the deflection spec. (**3mm out of plane** / **twisting**)

Wave analysis to understand forces endured at sea

Preparing for transport

- Rigid structure to fix ring
- Three point mount

Fixture in place

Not a spaceship

Not a spaceship

Ready for the transport

Added shrink wrap & ready to roll

Rolling Roadblocks

8/16/13 • 30

Craned off of the trailer

And onto the barge

EMMER

BNCRINE

BAYCRANE

The journey

80

Heideck

For photos and more info : http://muon-g-2.fnal.gov/bigmove/

8/16/13 • 33

Wilton

Midewin National

45

Kiburg, DPF UCSC

Changing Tugboats in Mobile Bay July 12

Ocean Tug: Trident

River Tug: Miss Katie

• Kiburg, UC REU Aug 2013

8/15/13 • 34

Passing through Illinois locks

Kiburg, UC REU Aug 2013

Arriving at Lemont July 20th, 2013

No traffic on the interstate ③

• Kiburg, UC REU Aug 2013

July 26, 2013

The Physics of Muon g-2

Experimental Technique

Fermilab Muon g-2

The Ring Transport

Going forward

- \checkmark Ring is at Fermilab
- Plan to start installation in the new building during the next six months
- Re-assemble yoke, coils, pole pieces and start the shimming procedure
- Simultaneous accelerator upgrades
- Beam in 2016...

Backup Slides

\bullet \bullet \bullet

What about the new physics? One example: SUSY

Peter Winter (ANL), Muon g-2 at Fermilab, 46th Fermilab Users Meeting, June 2013

Two important ingredients

- 1. Polarized muons from pion decay
- $\nu \longleftrightarrow \pi^+ \longleftrightarrow \mu^+$

2. Muon decay is self-analyzing

aSM limited by hadronic terms

Hadronic Vacuum Polarization

- Ingredients:
 - Experimental determination:

$$R = \frac{\sigma_{total}(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

Dispersion relation

• Dispersion relation

$$a_{\mu}^{HVP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \frac{R(s)K(s)}{s^2}$$

- $\delta a_{\mu}^{HVP} \sim 0.36$ part-per-million
- Pending Improvements:
 - Data from BaBar, KLOE, BES-III...
 - Parallel lattice QCD efforts
 - Preliminary IQCD results match

8/16/13 • 45

a_{μ}^{SM} limited by hadronic terms

- Hadronic light by light scattering
 - More complicated
 - Not expressed in terms of experimental quantities
 - Uncertainties are model-dependent

- Early lattice calculations appear promising
- Will require significant computing resources

From R. Van de Water

Contribution	Result $(\times 10^{11})$	Error
QED (leptons)	$116\ 584\ 718\ \pm\ 0.14\ \ \pm\ 0.04_{lpha}$	$0.00 \mathrm{~ppm}$
HVP(lo) [1]	$6 \hspace{.1in} 923 \hspace{.1in} \pm \hspace{.1in} 42$	0.36 ppm
HVP(ho)	-98 \pm 0.9 $_{\mathrm{exp}}$ \pm 0.3 $_{\mathrm{rad}}$	$0.01 \mathrm{\ ppm}$
HLbL [2]	105 ± 26	0.22 ppm
\mathbf{EW}	$154 \pm 2 \qquad \pm 1$	$0.02 \mathrm{~ppm}$
Total SM	$116\ 591\ 802\ \pm\ 49$	$0.42 \mathrm{~ppm}$

All plots from Ruth Van de Water @ Snowmass, Aug 2013 First four-flavor result (PRELIMINARY)

Ruth Van de Water @ Snowmass, Aug 2013 Outlook

HADRONIC VACUUM POLARIZATION

- Theoretical improvements + increased computing resources should enable a lattice-QCD determination with few-percent error on the timescale of Muon g-2 Experiment
- Will have independent cross-checks from several collaborations
- With this precision may already be able to weigh in on e⁺e⁻ versus τ discrepancy
- No remaining theoretical barriers to eventually reducing uncertainty to sub-percent level, at which point the lattice determination can supplant the experimentally-based value

HADRONIC LIGHT-BY-LIGHT

- Calculations still in early stages and future errors are difficult to predict
- Determination in next five years with ~15% precision possible, but not guaranteed
- Significant computing (and human) resources will be devoted to this high-priority calculation
- May need further theoretical developments, and independent cross-checks will be essential

Continued support for lattice-QCD hardware and software is essential for computations needed to interpret muon g-2 as well as measurements throughout the experimental HEP program

R. Van de Water

QCD progress in hadronic contributions to muon g-2

Kiburg, DPF UCSC

21

Current status of a_{μ} in Standard Model

	Value (x 10 ⁻¹¹)
QED	116 584 718.951 \pm 0.009 \pm 0.019 \pm 0.007 \pm 0.077
HVP (Io)	6949 ± <mark>42</mark>
HVP (ho)	-98.4 ± 0.7
HLBL	105 ± <mark>26</mark>
EQ	154 ± 1
Total SM	116 591 802 ± 49

$$a_{\mu}^{Expt.} - a_{\mu}^{SM} = (260 \pm 78) \times 10^{-11}$$
 (3.3 σ)

• E989 relies on precision measurement of two quantities, ω_a and $\tilde{\omega}_p$:

$$a_{\mu} = rac{\omega_a/\widetilde{\omega}_p}{\mu_{\mu}/\mu_p - \omega_a/\widetilde{\omega}_p}$$

• $\tilde{\omega}_p$: free proton precession frequency weighted by muon distribution $\approx 2\pi \times 61.79$ MHz

- \Rightarrow Goal is to determine $\tilde{\omega}_p$ with uncertainty 0.070 ppm ($\delta \tilde{\omega}_p \leq 2\pi \times 4.3$)
 - E989 largely based on principles and hardware developed by Heidelberg and Yale for E821
 - E821 fractional uncertainty on field was 0.17 ppm : E989 needs to do 2.4 times better
 - ullet Changes to hardware and techniques to get from 0.17 to 0.070 ppm on ω_p outlined below

Four Field Measurement Tasks :

- (1) Monitor magnetic field with fixed probes on vacuum chambers while muons stored in ring;
- (2) Map the magnetic field in muon storage volume with NMR trolley when the beam is off;
- (3) Provide an absolute calibration relating NMR trolley field measurements inside storage volume to the precession frequency of a free proton;
- (4) Provide feedback to the power supply to stabilize field when muon data are collected.

Main E989 Improvements in Field Measurement

Category	E821	Main E989 Improvement Plans	Goal
	[ppm]		[ppm]
Absolute field calibra-	0.05	Special 1.45 T calibration magnet with thermal en-	0.035
tion		closure; additional probes; better electronics	
Trolley probe calibra-	0.09	Smaller abs cal probe to calibrate all trolley probes;	0.03
tions		better position accuracy by physical stops and/or	
		optical survey; more frequent calib, better shimming	
Trolley measurements	0.05	Reduced rail irregularities; reduced position uncer-	0.03
of B_0		tainty by factor of 2; stabilized magnet field during	
		measurements; smaller field gradients	
Fixed probe interpola-	0.07	More frequent trolley runs; more fixed probes; bet-	0.03
tion		ter temp. stability of the magnet, correct for ΔI	
Muon distribution	0.03	Additional probes at larger radii; improved field uni-	0.01
		formity; improved muon tracking	
Time-dependent exter-	_	Direct measurement of external fields; simulations	0.005
nal magnetic fields		of impact; active feedback	
Others †	0.10	Improved trolley power supply; trolley probes ex-	0.03
		tended to larger radii; reduced temperature effects	
		on trolley; measure kicker field transients	
Total syst. unc. on ω_p	0.17		0.07

Shrink wrap

