THE LBNE NEAR DETECTOR

Elena Guardincerri – Los Alamos Laboratory

Status of v Physics and LBNE

Neutrino oscillation experiments proved that neutrinos are mixed and massive

LBNE

LBNE: the signature

$$A(E_{v}) = \frac{P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})}{P(v_{\mu} \rightarrow v_{e}) + P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})}$$

- The asymmetry is due to
 - CP: if δ_{CP}≠ 0,π
 - · Matter effect: matter interacts differently with neutrinos and antineutrinos
 - Neutrinos and antineutrinos experience a different index of refraction. P_{μe} is different for neutrinos and antineutrinos.
 - The two effects can be searched for (and distinguished) by looking at the spectral features of P (v_µ→v_e) and P(anti-v_µ→anti-v_e)

Motivations for a near detector

• LBNE will not measure oscillation probabilities but event rates:

 $R(E)_{FD} = k \times \Phi(E) \times P(v_{\alpha} \rightarrow v_{\beta}) \times \sigma(E) \times \epsilon(E) + B(E)$

- At the far detector (FD), the first and the second oscillation maxima occur at about <u>2.4 GeV and 0.8 GeV</u>, respectively
- In this energy range neutrino <u>cross sections</u> are <u>poorly known</u> (uncertainties ~20 %)
- > crucial to measure the neutrino fluxes and interaction channels at a near site
 - before the fluxes have been affected significantly by neutrino oscillations –
 in order to be able to predict both signal and background at the far site
- It is also critical to identify and measure processes that can mimic oscillation signals at the liquid Argon far detector (FD)
 - Mainly charged and neutral pion production
 - > backgrounds must be measured individually since different backgrounds have different extrapolations to the FD position

Status of the LBNE near detector

- Approved scope:
 - Beamline measurements (more on this next)
- Goal:
 - Beamline measurements
 - Near Neutrino Detector (more on this next)
 - Strong interest from India to build the neutrino detector with US scientists (STT)
 - In addition, explore the possibility of a LAr neutrino detector
 - Non-DOE (NSF or international) partners could provide a LAr TPC that could be placed upstream of the STT
 - We wish to build a hall that can accommodate more than one detector

The near detector complex

Proposed near detector complex

- Consists of a <u>beamline measurements system (BLM)</u> and a <u>neutrino-</u> <u>detection</u> system (ND)
- The <u>ND</u> will be located at the Near Site (Fermilab), downstream of the beamline
 - Measure the v_{μ} , anti- v_{μ} , v_{e} , anti- v_{e} using CC
 - Measure the absolute flux and shape of neutrinos at ND, and predict FD/ND
 - Measure backgrounds to oscillation signal (π^0 , π^+ , π_- , ..)
 - Measure v-Ar interactions
- The <u>BLM</u> will be located in the region of the Absorber Complex at the downstream end of the decay region to measure the muon flux from hadron decay
 - To determine the neutrino flux and spectrum and to monitor the beam profile on a spill-by-spill basis

Muon measurements facilities

-4 x 10 0.9

0.8

All neutrinos

Neutrinos with muons muon monitors

Muon measurements

- Muons and neutrinos come from the same parent pion and kaon decays
- 0.7 $\begin{aligned}
 \mu &\to \mu^{-} + \nu_{\mu} \\
 \pi^{-} \to \mu^{-} + \overline{\nu}
 \end{aligned}$ 0.6 dominant channel 0.5 0.4 0.3 > a measurement of the absolute muon flux and energy spectrum can confirm the absolute neutrino flux 0.2 Goal: determine the absolute muon flux to an accuracy of 5% 0.1 above $E_{\mu} \sim 6 \text{ GeV}$ (corresponding to $E_{\nu} \sim 1.6 \text{ GeV}$) 10 Far Detector Neutrino Energy (GeV) Muon ionization detectors Beam direction stability over time Stopped-muon (Michel-electron) detectors Measure muon energy spectra in ~ (6, 14) GeV range Muon Cherenkov detectors Map the muon momentum distribution muon flux at the ND: 10⁸/cm²/s

The beamline measurement

Muon ionization detectors

- A misalignment of the beam leads to a change in the ratio flux_{ND}/flux_{FD}: to keep the change lesser than 1% in all energy bins the beam direction must be known to ~0.2 mrad → 5 cm
- Sealed ionization counters (rad hard)

Stopped-muon detectors

- Detect stopped muons through their decay (μ^+ and μ^-) or capture (μ^-)
 - capable of distinguishing $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$
 - <u>modules at multiple depths</u> in the shielding/rock behind the absorber to sample the muon flux from different energies

Stopped-muon detectors

Muon Cherenkov detectors

- Counters where a gas (noble gas) radiator is contained in a pressurized tube
- <u>Cherenkov light collected at the end of the tube by a mirror that</u> reflects it 90 degrees towards a PMT
- <u>Gas pressure can be varied</u> from vacuum to several atmospheres
 - this <u>changes the index of refraction</u>, and hence the muon momentum threshold
 - the pressure scan would give the <u>momentum distribution of the</u>
 <u>muons</u>

Prototyping effort

- Beam-line detectors being prototyped now
- Assembly of the Cherenkov detector on the surface at Fermilab in progress, transfer underground (alcove 2 of the NuMI beamline) scheduled in August.
 - A stopped-muon counter prototype is being prepared at Drexel also
- Tests scheduled from August 2013 through 2014 using the NuMI beamline parasitically

The neutrino detector

Neutrino detector: the Straw Tube Tracker

- Nuclear targets at the upstream end to study v-nuclear interactions (provide ~ x5 the FD statistics)
- TR → e⁻/e⁺ ID (γ)
- dE/dx → p, π^{+/-}, K^{+/-}

- V = 350 x 350 x 750 cm³
 - ρ ~0.1 g/cm³, m =7t
- ~1 cm diameter ST
- Alternated Y and X planes of straws arranged in modules
- TR Radiator foils between the modules
 - Polypropylene (C₃H₆)n films alternating with spacers
 - $X_0 \sim 5m$ in the STT

Neutrino detector: the Electromagnetic CALorimeter

- Tracking volume completely surrounded by an ECAL
- Layers of 10 mm thick scintillator bars with alternating directions separated by 1.75 mm Pb foils
 - DS: 18 X₀
 - Side, US: 10 X₀

• 4π coverage enables detection of neutral particles produced in v interactions (γ , n, K⁰) through their shower (longitudinal/transverse profile)

The magnet and the muon identifier detector

- <u>Magnetic field (0.4 T) required to measure the momentum and charge-</u> sign of the products from v interactions. Purpose:
 - determine the beam flux at the near site
 - requires $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$ separation
 - measure e^{+/-}, necessary for the characterization of v_e -CC and anti- v_e -CC interactions and the determination of the neutrino beam content (intrinsic v_e and anti- v_e irreducible background for v_e appearance search at the FD)
- Muon ID: Resistive Plate Chambers (RPC) operated in streamer regime
 - Muon Range Detector (MRD): RPCs in the gaps of the magnet yoke
 - External Muon Identifier (EMI): downstream.
 - Detects forward energetic muons

Expected performances

- 200 μ m on individual hits, ~100 μ m on the vertex of a v_µ-CC event
- Δt ~ 1ns
- $\sigma_p/p = 0.05/\sqrt{L} = 0.008p/\sqrt{L^5}$ (p in GeV/c², L in m)
- 1/1000 pion rejection from TR
- ΔE/E ~ 6%/√E
- ∆t ~ 1ns
- Powerful discrimination of EM/hadronic showers
- <u>Flux</u> determination:
 - Absolute v_{μ} flux ≅2.5% for E_{ν} < 10 GeV, absolute v_{μ} flux ~ 3% at high energy
 - v_µ(E)/anti-v_µ(E) < 2% for 1.5 < E_v < 30 GeV, v_µ(E)/anti-v_µ(E) ~3 % for 0.5 < E_v < 1.5 GeV
 - $v_e(E)/v_\mu(E) < 0.1\%$, anti- $v_e(E)/anti-v_\mu(E) < 0.1\% \Rightarrow$ Absolute $v_e(anti-v_e) \sim 2\%$
 - Precision on shape of the $v_{\mu}(anti-v_{\mu})$ dominant component $\leq 2\%$ for 1 < $E_{\nu} < 30$ GeV
- Excellent event reconstruction and identification capabilities

arXiv:1307.7335

The neutrino detector: alternative design

Physics opportunities

- The intense neutrino flux (expected ~10⁸ CC interactions for 10²² POT) combined with the fine segmentation of the ND offer the opportunity for many physics measurements besides the long-baseline oscillation program
 - Weak mixing angle θ_W
 - Strangeness content of the nucleus
 - Nucleon Structure, Parton Distribution Functions and QCD studies
 - Nuclear effect impact on neutrino-nuclear interactions
 - Search for heavy neutrinos
 - Search for high Δm^2 neutrino oscillations
 - Light Dark Matter searches in the neutrino beam

Sub GeV dark matter searches

- Due to the lack of evidence for WIMPS at direct detection experiments and LHC (search for $m_W > 10$ GeV) new theories with light DM particles formulated
- Light mediator (dark photon V) needed to allow efficient DM annihilation in the early universe
 - In the simplest model an U(1) gauge field mixes with the SM U(1) gauge field
 - Detectable at high flux v experiments (LBNE)
- V produced by protons striking the target either directly or via π^0 or η production and decay
 - If $m_V > 2m_{DM} V \rightarrow 2\chi$

- χ detectable through NC-like interactions on nucleons/electrons. Same signature as neutrinos but:
 - different timing $(v_{\chi} < < v_{\nu})$
 - Electron recoil much more forward
 - · A special run with no focusing would reduce the flux of neutrinos

Thank you!