The search for the electroweak production of supersymmetric particles in events with two leptons and missing energy at ATLAS

> Brett Jackson University of Pennsylvania

> > August 15, 2013





## Outline

- Motivation
- Methodology
- Signal regions
- Background estimates
- Results & interpretation
- Conclusions & outlook

## Motivation

- At proton-proton collider, we expect large coupling to squarks and gluinos due to the strong interactions.
  - Searches have not found any sign of these particles, and set strong limits on their masses (at the TeV scale)
  - Naturalness motivates light gauginos
  - Electroweak SUSY production may be favored at LHC energies
- Focusing on two lepton (e,µ) final states
- Latest public result
  - 20.3 fb<sup>-1</sup> @ 8 TeV
  - <u>http://cds.cern.ch/record/1547565</u>



Brett Jackson (University of Pennsylvania)

3

## Methodology

Considering simplified SUSY models

- Chargino pair production, decaying via sleptons or W bosons
- Slepton pair production
- Cut-and-count analysis
  - Five signal regions, each targeting different scenarios
- Dominant backgrounds are measured in Monte Carlo, and scale factors are derived in control regions
- Upper limits on the visible cross section are set using a modified frequentist approach (CL<sub>s</sub>)



## Object & event selection

| Variable                               | Electrons                 | Muons              |
|----------------------------------------|---------------------------|--------------------|
| $p_T$ [GeV]                            | > 10                      | > 10               |
| $ \eta $                               | < 2.47                    | < 2.4              |
| $\left \frac{d_0}{\sigma(d_0)}\right $ | < 5                       | < 3                |
| $z_0 sin(\theta)$ [mm]                 | < 0.14 mm                 | < 1 mm             |
| Track isolation                        | $< 0.16 \times p_{T}$     | $< 0.12 	imes p_T$ |
| Calorimeter isolation                  | $ $ < 0.18 $\times$ $p_T$ | -                  |

#### Jets:

- <sub>PT</sub> > 20 GeV
- |η| < 4.9
- Containing tracks which are consistent with the primary vertex
- b-tagging: 80% efficient operating point
- Other criteria:
  - Exactly two leptons (e/µ)
  - Di-lepton triggers
  - Reject events with  $m_{\parallel} < 20 \text{ GeV}$  (Avoid low mass resonances)

## Important variables

- Missing transverse energy (E<sub>T</sub><sup>miss</sup>)
  - Sum all the energy deposits in the calorimeters
  - Correction based on reconstructed electrons, muons, and jets
- Relative missing transverse energy (E<sub>T</sub><sup>miss,rel</sup>)
  - Used to distinguish missing energy from real process from that from mis-measurement of jets or leptons

$$E_{\rm T}^{\rm miss, rel} = \begin{cases} E_{\rm T}^{\rm miss, rel} : \Delta \phi_{\ell,j} \ge \pi/2 \\ E_{\rm T}^{\rm miss, rel} \times \sin \Delta \phi_{\ell,j} : \Delta \phi_{\ell,j} < \pi/2 \end{cases}$$

- Stransverse mass (m<sub>T2</sub>)
  - Used to separate signal and background
  - Standard model background have a kinematic edge lower than that of SUSY models  $m_{T2} = \min_{\mathbf{q}_{T}} \left[ \max \left( m_{T} \left( \mathbf{p}_{T}^{\ell 1}, \mathbf{q}_{T} \right), m_{T} \left( \mathbf{p}_{T}^{\ell 2}, \mathbf{p}_{T}^{\text{miss}} \mathbf{q}_{T} \right) \right) \right]$

## Signal regions

### SR-m<sub>T2</sub>

|                                | SRm <sub>T2,90</sub>   SRm <sub>T2,110</sub>       |  |  |
|--------------------------------|----------------------------------------------------|--|--|
| Lepton flavor                  | $ $ e $^-$ e $^+$ , $\mu^-\mu^+$ , e $^\pm\mu^\mp$ |  |  |
| Jets                           | Full jet veto                                      |  |  |
| $m_{ll}$                       | Z veto                                             |  |  |
| ${\it E}_{ m T}^{ m miss,rel}$ | > 40 GeV                                           |  |  |
| $m_{T2}$                       | $\mid$ > 90 GeV $\mid$ > 110 GeV                   |  |  |



- SR-m<sub>T2</sub>
  - Targets χ<sub>1</sub><sup>±</sup>χ<sub>1</sub><sup>±</sup> production
    - χ<sub>1</sub><sup>±</sup> decays via sleptons
  - Also, direct slepton pair production
  - Two signal regions
    - SR-m<sub>T2,90</sub>: Targets low χ<sub>1</sub><sup>±</sup> mass
    - SR-m<sub>T2,110</sub>:Targets high χ<sub>1</sub><sup>±</sup> mass





- SR-WW
  - Targets χ<sub>1</sub><sup>±</sup>χ<sub>1</sub><sup>±</sup> production
    - χ<sub>1</sub><sup>±</sup> decays via W boson
  - Three signal regions
    - SR-WWa: Target models with off shell W's
    - SR-WWb,c:Target models with increasing χ<sub>1</sub><sup>±</sup>-χ<sub>1</sub><sup>0</sup> mass splitting

## Signal regions

#### SR-m<sub>T2</sub>

SR-m<sub>T2,110</sub>:Targets high  $\chi_1^{\pm}$  mass





 SR-WWb,c:Target models with increasing χ<sub>1</sub><sup>±</sup>-χ<sub>1</sub><sup>0</sup> mass splitting

## Signal regions

#### SR-m<sub>T2</sub>





- SR-m<sub>T2</sub>
  - Targets χ<sub>1</sub><sup>±</sup>χ<sub>1</sub><sup>±</sup> production
    - χ<sub>1</sub><sup>±</sup> decays via sleptons
  - Also direct slepton pair production
  - Two signal regions
    - SR-m<sub>T2,90</sub>: Targets low χ<sub>1</sub><sup>±</sup> mass
    - SR-m<sub>T2,110</sub>:Targets high χ<sub>1</sub><sup>±</sup> mass

- SR-WW
  - Targets χι<sup>±</sup>χι<sup>±</sup> production
    - χ<sub>1</sub><sup>±</sup> decays via W boson
  - Three signal regions
    - SR-WWa: Target models with off shell W's
    - SR-WWb,c:Target models with increasing χ<sub>1</sub><sup>±</sup>-χ<sub>1</sub><sup>0</sup> mass splitting

## Backgrounds - I

Standard model sources of di-lepton final states + fake leptons



- Dominant backgrounds prediction is measured in Monte Carlo and corrected using a dedicated control region
- Other background estimates are taken from Monte Carlo and matrix method

## Backgrounds - II

Measure scale factor in control region to account for data/Monte Carlo disagreement

$$\mathcal{S} = \frac{\left[N_{\text{data}}^{\text{CR}} - N_{\text{MC,other bkgd}}^{\text{CR}}\right]}{N_{\text{MC,target bkgd}}^{\text{CR}}}$$

 Measure transfer factor from control region to signal region in Monte Carlo

$$\mathcal{T} = \frac{N_{\rm MC,target\,bkgd}^{\rm SR}}{N_{\rm MC,target\,bkgd}^{\rm CR}}$$

• Compute estimated background contribution to signal region

$$N_{\text{data,target bkgd}}^{\text{SR}} = \mathcal{S} \times \mathcal{T} \times N_{\text{MC,target bkgd}}^{\text{CR}}$$



#### ATLAS-CONF-2013-049

## WW control regions

| Signal region            | SRm <sub>T2,90</sub>   SRm <sub>T2,110</sub> |  |  |
|--------------------------|----------------------------------------------|--|--|
| Lepton flavor            | $e^{\pm}\mu^{\mp}$                           |  |  |
| Jets                     | Full jet veto                                |  |  |
| $m_{ll}$                 | Z veto                                       |  |  |
| $E_{ m T}^{ m miss,rel}$ | > 40 GeV                                     |  |  |
| $m_{ m T2}$              | 50-90                                        |  |  |

| Signal region                        | SRWW <sub>a</sub> | SRWW <sub>b</sub>   SRWW <sub>c</sub> |  |
|--------------------------------------|-------------------|---------------------------------------|--|
| Lepton flavor                        |                   | $e^{\pm}\mu^{\mp}$                    |  |
| Jets                                 | Full jet veto     |                                       |  |
| $m_{ll}$                             | -                 |                                       |  |
| $\delta \phi(\ell \ell)$             | > 1.8 rad         |                                       |  |
| $E_{\mathrm{T}}^{\mathrm{miss,rel}}$ | < 70 GeV          | -                                     |  |
| m <sub>T2</sub>                      | -                 | < 90 GeV                              |  |

- Non-WW contamination:
  - Top: 13%
  - Z+vector boson: 3%
- Scale factors:

| SR-m <sub>T2</sub> | 1.12 ± 12.5%     |
|--------------------|------------------|
| SR-WW              | I.I6–I.I9 ± 6–8% |



## Top control regions

| Signal region            | SRm <sub>T2,90</sub> SRm <sub>T2,110</sub> |
|--------------------------|--------------------------------------------|
| Lepton flavor            | $e^-e^+$ , $\mu^-\mu^+$ , $e^\pm\mu^\mp$   |
| B-tagged jets            | $\geq 1$                                   |
| Signal jets              | $\geq 2$                                   |
| $m_{ll}$                 | Z veto                                     |
| $E_{ m T}^{ m miss,rel}$ | > 40 GeV                                   |
| $m_{ m T2}$              | 50-90                                      |

| Signal region            | SRWW <sub>a</sub> | $SRWW_b$           | SRWW <sub>c</sub> |
|--------------------------|-------------------|--------------------|-------------------|
| Lepton flavor            |                   | $e^{\pm}\mu^{\mp}$ |                   |
| B-tagged jets            |                   | $\geq 1$           |                   |
| Signal jets              |                   | $\geq 1$           |                   |
| $m_{ll}$                 | < 80 GeV          | $< 130  { m GeV}$  | -                 |
| $p_T^{\prime\prime}$     | > 70 GeV          | $< 170  { m GeV}$  | $< 190  { m GeV}$ |
| $\delta \phi(\ell \ell)$ |                   | > 1.8 rad          | I                 |
| $E_{ m T}^{ m miss,rel}$ | > 70 GeV          | -                  | -                 |
| $m_{ m T2}$              | -                 | < 90 GeV           | $< 100 { m ~GeV}$ |

#### Non-top contamination:

- SR-m<sub>T2</sub>: 2%
- SR-WW: <1%
- Scale factors (derived in  $e\mu$ )

| SR-m <sub>T2</sub> | I.05 ± 4.8%       |  |  |
|--------------------|-------------------|--|--|
| SR-WW              | 0.98-1.07 ± 4-13% |  |  |



160

150

m<sub>T2</sub>[GeV]

220 240

p<sub>TI</sub>[GeV]

## Z+vector control regions

| Signal region                        | SRm <sub>T2,90</sub> SRm <sub>T2,110</sub> |  |  |
|--------------------------------------|--------------------------------------------|--|--|
| Lepton flavor                        | $e^-e^+$ , $\mu^-\mu^+$                    |  |  |
| Jets                                 | Full jet veto                              |  |  |
| <i>m</i> //                          | Z window                                   |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss,rel}}$ | > 40 GeV                                   |  |  |
| $m_{ m T2}$                          | > 90 GeV $ >$ 110 GeV                      |  |  |

- No control region for SR-WW
- Negligible contribution from non-Z+vector boson sources
  - Z+jets events m<sub>T2</sub> requirement
  - Confirmation Z+jets contribution is negligible in high-m<sub>T2</sub> region
- Scale factors

SR-m<sub>T2</sub> 0.96-1.06 ± 15-16%



## Results & interpretation - I

#### ATLAS-CONF-2013-049

#### SR-m<sub>T2,90</sub>

|                                       | e <sup>+</sup> e <sup>-</sup> | $\mu^+\mu^-$                    | ${f e}^\pm\mu^\pm$              | all                           |
|---------------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------------------|
| Observed                              | 15                            | 19                              | 19                              | 53                            |
| Background total                      | $16.6\pm2.3$                  | $20.7\pm3.2$                    | $22.4\pm3.3$                    | $59.7\pm7.3$                  |
| WW                                    | $9.3\pm1.6$                   | $14.1\pm2.2$                    | $12.6\pm2.0$                    | $36.1\pm5.1$                  |
| ZV (V = W  or  Z)                     | $6.3 \pm 1.5$                 | $\textbf{0.8}\pm\textbf{0.3}$   | $7.3\pm1.7$                     | $14.4\pm3.2$                  |
| Тор                                   | $0.9^{+1.1}_{-0.9}$           | $5.6\pm2.1$                     | $2.5\pm1.8$                     | $8.9\pm3.9$                   |
| Higgs                                 | $0.11\pm0.04$                 | $0.19\pm0.05$                   | $0.08\pm0.04$                   | $0.38\pm0.08$                 |
| Fake                                  | $0.00\substack{+0.18\\-0.00}$ | $0.00\substack{+0.14 \\ -0.00}$ | $0.00\substack{+0.15 \\ -0.00}$ | $0.00\substack{+0.28\\-0.00}$ |
| Observed $\sigma_{vis}^{95}$ [fb]     | 0.44                          | 0.47                            | 0.51                            | 0.81                          |
| Expected $\sigma_{\rm vis}^{95}$ [fb] | $0.50\substack{+0.22\\-0.15}$ | $0.58\substack{+0.25 \\ -0.17}$ | $0.57\substack{+0.25 \\ -0.17}$ | $1.00^{+0.41}_{-0.28}$        |

|                                       | e <sup>+</sup> e <sup>-</sup>   | $\mu^+\mu^-$                    | $e^{\pm}\mu^{\pm}$              | all                             |
|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Observed                              | 4                               | 5                               | 4                               | 13                              |
| Background total                      | $6.1\pm2.2$                     | $4.4\pm2.0$                     | $\textbf{6.3} \pm \textbf{2.4}$ | $16.9\pm6.0$                    |
| WW                                    | $2.7\pm1.5$                     | $\textbf{3.6}\pm\textbf{2.0}$   | $2.9\pm1.6$                     | $9.1\pm4.9$                     |
| ZV (V = W  or  Z)                     | $2.7\pm1.4$                     | $0.2\pm0.1$                     | $\textbf{3.4}\pm\textbf{1.8}$   | $6.3\pm3.3$                     |
| Тор                                   | $0.7\pm0.7$                     | $0.6\pm0.4$                     | $0.0\pm0.0$                     | $1.3\pm1.0$                     |
| Higgs                                 | $0.05\pm0.03$                   | $0.12\pm0.04$                   | $0.05\pm0.02$                   | $0.22\pm0.05$                   |
| Fake                                  | $0.00\substack{+0.09\\-0.00}$   | $0.00\substack{+0.13 \\ -0.00}$ | $0.00\substack{+0.12\\-0.00}$   | $0.00\substack{+0.28\\-0.00}$   |
| Observed $\sigma_{\rm vis}^{95}$ [fb] | 0.27                            | 0.35                            | 0.28                            | 0.54                            |
| Expected $\sigma_{vis}^{95}$ [fb]     | $0.33\substack{+0.16 \\ -0.10}$ | $0.33\substack{+0.16 \\ -0.09}$ | $0.33\substack{+0.16 \\ -0.10}$ | $0.62\substack{+0.23 \\ -0.16}$ |

SR-m<sub>T2,110</sub>

|                                       | SR-WW                           |                                 |                                   |
|---------------------------------------|---------------------------------|---------------------------------|-----------------------------------|
|                                       | SRWW <sub>a</sub>               | SRWW <sub>b</sub>               | SRWW <sub>c</sub>                 |
| Observed                              | 123                             | 16                              | 9                                 |
| Background total                      | $\mid 117.9 \pm 14.6$           | $13.6\pm2.3$                    | $7.4 \pm 1.5$                     |
| Тор                                   | $15.2\pm6.6$                    | $2.7\pm1.1$                     | $1.0\pm0.7$                       |
| WW                                    | $98.6 \pm 14.6$                 | $10.2\pm2.1$                    | $5.9 \pm 1.3$                     |
| ZV (V = W  or  Z)                     | $3.4\pm0.8$                     | $0.26\substack{+0.31\\-0.26}$   | $\textbf{0.29} \pm \textbf{0.14}$ |
| Higgs                                 | $0.76\pm0.14$                   | $0.21\pm0.06$                   | $0.10\pm0.04$                     |
| fake                                  | $0.02\substack{+0.33 \\ -0.02}$ | $0.26\substack{+0.30 \\ -0.26}$ | $0.12\substack{+0.17 \\ -0.12}$   |
| Observed $\sigma_{\rm vis}^{95}$ [fb] | 1.94                            | 0.58                            | 0.43                              |
| Expected $\sigma_{\rm vis}^{95}$ [fb] | $1.77\substack{+0.66\-0.49}$    | $0.51\substack{+0.21 \\ -0.15}$ | $0.37^{+0.18}_{-0.11}$            |

- Observations are consistent with Standard model prediction
- Set limits on the cross section of non-Standard Model processes

## Results & interpretation - I







ATLAS-CONF-2013-049

- Combination performed by taking best performing signal region for each model
- Direct slepton production:
  - Slepton masses between 90 GeV and 320 GeV excluded
- X<sub>1</sub><sup>±</sup> pair production (decay via slepton):
  - χ<sub>1</sub><sup>±</sup> masses between 130 GeV and 450 GeV excluded

Brett Jackson (University of Pennsylvania)

## Results & interpretation - III ATLAS-CONF-2013-049





## Conclusions

- Latest results for the search for direct production of charginos and sleptons in the two lepton channel have been shown
- Observations are consistent with the Standard Model predictions
- Limits are set on the mass of sleptons and charginos
- Limits are set on the production cross section of charginos which decay via a W boson
- Outlook:
  - We plan to update these results in a summer paper
  - Plan to add new channels targeting  $\chi_2^0\chi_1^{\pm}$
  - Two leptons consistent with a Z-boson
  - Same sign leptons
    - Target scenarios with low mass splitting between  $\chi_2^0/\chi_1^{\pm}$  and  $\chi_1^0$

# Thank you for listening!

## Backup

Brett Jackson (University of Pennsylvania)



## ATLAS SUSY reach

 $\mathbf{E}_{\mathbf{T}}^{\text{miss}} \int \mathcal{L} dt [fb^{-1}]$ 

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

e,  $\mu$ ,  $\tau$ ,  $\gamma$  Jets

Status: EPS 2013

Model

Searches

Inclusive

-ong-livea

RPV

Other

#### MSUGRA/CMSSM 0 2-6 jets Yes 20.3 1.7 TeV $m(\tilde{q})=m(\tilde{g})$ ATLAS-CONF-2013-047 MSUGRA/CMSSM 3-6 jets any m( $\tilde{q}$ ) ATLAS-CONF-2013-062 $1 e, \mu$ Yes 20.3 1.2 TeV MSUGRA/CMSSM 7-10 jets 0 Yes 20.3 1.1 TeV any $m(\tilde{q})$ ATLAS-CONF-2013-054 2-6 jets Yes 20.3 740 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-047 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 0 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 0 2-6 jets Yes 20.3 $m(\tilde{\chi}_1^0)=0$ GeV ATLAS-CONF-2013-047 1.3 TeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_1^{\pm} \rightarrow qq W_1^{\pm} \tilde{\chi}_1^0$ 1 e,μ 3-6 jets Yes 20.3 1.18 TeV $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ ATLAS-CONF-2013-062 $\tilde{g}\tilde{g} \rightarrow qq\bar{q}q\ell\ell(\ell\ell)\tilde{\chi}_1^0\tilde{\chi}_1^0$ 2 e, µ (SS) 3 jets 1.1 TeV $m(\tilde{\chi}_{1}^{0}) < 650 \, \text{GeV}$ ATLAS-CONF-2013-007 Yes 20.7 tanβ<15 GMSB ( $\tilde{\ell}$ NLSP) 2-4 jets 1.24 TeV 2 e, µ Yes 4.7 1208.4688 GMSB (*ℓ* NLSP) $\tan\beta > 18$ **1-2** *τ* 0-2 jets Yes 20.7 1.4 TeV ATLAS-CONF-2013-026 GGM (bino NLSP) $2\gamma$ 1.07 TeV $m(\tilde{\chi}_1^0) > 50 \text{ GeV}$ 0 Yes 4.8 1209 0753 GGM (wino NLSP) $1 e, \mu + \gamma$ 0 Yes 4.8 619 GeV $m(\tilde{\chi}_1^0) > 50 \text{ GeV}$ ATLAS-CONF-2012-144 GGM (higgsino-bino NLSP) γ 1 *b* Yes 4.8 $m(\tilde{\chi}_{1}^{0})>220 \, GeV$ 1211.1167 900 GeV GGM (higgsino NLSP) $2 e, \mu (Z)$ 0-3 jets Yes 5.8 m(*H*)>200 GeV 690 GeV ATLAS-CONF-2012-152 Gravitino LSP m(g)>10<sup>-4</sup> eV mono-jet Yes 10.5 645 GeV ATLAS-CONF-2012-147 0 $\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ 0 20.1 1.2 TeV $m(\tilde{\chi}_1^0) < 600 \, \text{GeV}$ ATLAS-CONF-2013-061 gen. med. 3 b Yes 0 7-10 jets 1.14 TeV $m(\tilde{\chi}_{1}^{0}) < 200 \, \text{GeV}$ $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$ Yes 20.3 ATLAS-CONF-2013-054 1.34 TeV $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$ 0-1 e, μ 3 b Yes 20.1 $m(\tilde{\chi}_1^0) < 400 \, \text{GeV}$ ATLAS-CONF-2013-061 3rd ₿ r 0-1 e, μ 20.1 1.3 TeV $m(\tilde{\chi}_1^0) < 300 \, \text{GeV}$ ATLAS-CONF-2013-061 3 b Yes $\tilde{g} \rightarrow b\bar{t}\tilde{\chi}_1$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ 100-630 GeV 0 2 b 20.1 $\tilde{b}_1$ $m(\tilde{\chi}_1^0) < 100 \, \text{GeV}$ Yes ATLAS-CONF-2013-053 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ 2 e, µ (SS) 430 GeV 0-3 b Yes 20.7 $m(\tilde{\chi}_{1}^{\pm})=2 m(\tilde{\chi}_{1}^{0})$ ATLAS-CONF-2013-007 h1 sy rc $\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 1-2 e, μ 1-2 b Yes 4.7 167 GeV $m(\tilde{\chi}_1^0)=55 \, \text{GeV}$ 1208.4305, 1209.2102 squar $\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ 2 e, µ 0-2 jets Yes 20.3 220 GeV $m(\tilde{\chi}_1^0) = m(\tilde{t}_1) - m(W) - 50 \text{ GeV}, m(\tilde{t}_1) < < m(\tilde{\chi}_1^{\pm})$ ATLAS-CONF-2013-048 $\tilde{t}_1 \tilde{t}_1$ (medium), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 2 e, µ 2 jets Yes 20.3 $\tilde{t}_1$ 225-525 GeV $m(\tilde{\chi}_1^0)=0$ GeV ATLAS-CONF-2013-065 $\tilde{t}_1 \tilde{t}_1$ (medium), $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 0 Yes 20.1 150-580 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$ ATLAS-CONF-2013-053 2 b ĩ1 gen. 20.7 200-610 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-037 $1 e, \mu$ Yes $\tilde{t}_1 \tilde{t}_1$ (heavy), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 1 b ĩ1 320-660 GeV $\tilde{t}_1 \tilde{t}_1$ (heavy), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 0 2 b Yes 20.5 $m(\tilde{\chi}_1^0)=0$ GeV ATLAS-CONF-2013-024 ĩ1 3rd dire 0 mono-jet/c-tag Yes 20.3 200 GeV $m(\tilde{t}_1)-m(\tilde{\chi}_1^0) < 85 \, \text{GeV}$ ATLAS-CONF-2013-068 tı $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1$ (natural GMSB) 2 e, μ (Z) 1 b Yes 20.7 500 GeV $m(\tilde{\chi}_{1}^{0}) > 150 \, \text{GeV}$ ATLAS-CONF-2013-025 ĩ1 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $3 e, \mu (Z)$ 1 b Yes 20.7 520 GeV $m(\tilde{t}_1)=m(\tilde{\chi}_1^0)+180 \text{ GeV}$ ATLAS-CONF-2013-025 ť۶ $\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$ 2 e, µ 0 Yes 20.3 85-315 GeV $m(\tilde{\chi}_1^0)=0$ GeV ATLAS-CONF-2013-049 125-450 GeV ATLAS-CONF-2013-049 EW direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ 2 e, µ 0 Yes 20.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV}, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ $\begin{aligned} \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^- \to \tilde{\ell}_L \nu \tilde{\ell}_L \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \to \tilde{\ell}_L \nu \tilde{\ell}_L \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu}\nu) \end{aligned}$ 20.7 180-330 GeV $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ ATLAS-CONF-2013-028 2τ 0 Yes $m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 3 e, µ 20.7 0 Yes 600 GeV ATLAS-CONF-2013-035 315 GeV $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$ , sleptons decoupled $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W^* \tilde{\chi}_1^0 Z^* \tilde{\chi}_1^0$ 3 e, µ 0 Yes 20.7 ATLAS-CONF-2013-035 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Disapp. trk 1 jet 20.3 270 GeV $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$ ATLAS-CONF-2013-069 Yes Stable, stopped $\tilde{g}$ R-hadron 1-5 jets 22.9 857 GeV $m(\tilde{\chi}_1^0)=100 \text{ GeV}, 10 \,\mu\text{s} < \tau(\tilde{g}) < 1000 \text{ s}$ 0 Yes ATLAS-CONF-2013-057 GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ 10<tanβ<50 **1-2** μ 475 GeV ATLAS-CONF-2013-058 0 15.9 GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$ , long-lived $\tilde{\chi}_1^0$ $2\gamma$ 230 GeV $0.4 < \tau(\tilde{\chi}_1^0) < 2$ ns Yes 4.7 0 1304.6310 $\tilde{\chi}_1^0 \rightarrow qq\mu \text{ (RPV)}$ 1μ 0 Yes 4.4 700 GeV 1 mm $< c\tau < 1$ m, $\tilde{g}$ decoupled 1210.7451 LFV $pp \rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e + \mu$ 2 e, µ $\lambda'_{311}$ =0.10, $\lambda_{132}$ =0.05 0 4.6 1.61 TeV 1212.1272 LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ -4.6 1.1 TeV $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ 1212.1272 $1 e, \mu + \tau$ 0 Bilinear RPV CMSSM 1 e,μ 7 jets Yes 4.7 1.2 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ ATLAS-CONF-2012-140 $$\begin{split} & \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_{e} \\ & \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau} \end{split}$$ 760 GeV 4 e,μ 20.7 $m(\tilde{\chi}_1^0)>300 \text{ GeV}, \lambda_{121}>0$ 0 Yes ATLAS-CONF-2013-036 3 e, $\mu$ + $\tau$ 350 GeV 20.7 $m(\tilde{\chi}_{1}^{0})>80 \text{ GeV}, \lambda_{133}>0$ ATLAS-CONF-2013-036 0 Yes $\tilde{g} \rightarrow qqq$ 0 6 jets -4.6 666 GeV 1210.4813 2 e, µ (SS) $\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 0-3 b Yes 20.7 880 GeV ATLAS-CONF-2013-007 Scalar gluon 4 jets sgluon 100-287 GeV 4.6 incl limit from 1110 2693 1210 4826 0 WIMP interaction (D5, Dirac $\chi$ ) 0 $m(\chi)$ <80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147 mono-jet Yes 10.5 704 GeV **10**<sup>-1</sup> 1 $\sqrt{s} = 7 \text{ TeV}$ √s = 8 TeV $\sqrt{s} = 8 \text{ TeV}$ Mass scale [TeV]

Mass limit

**ATLAS** Preliminary

Reference

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1}$  $\sqrt{s} = 7, 8 \text{ TeV}$ 

\*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 $\sigma$  theoretical signal cross section uncertainty.

Brett ackson (University of Pennsylvania)

full data

partial data

full data



Brett Jack

22

## Trigger Scheme



| ee channel | Leading p <sub>T</sub> | Sub-leading pT             |
|------------|------------------------|----------------------------|
| Region A   | 12                     | 12                         |
| Region B   | 24                     | 7                          |
| μμ channel | Leading pT             | Sub-leading p <sub>T</sub> |
| Region A   | 18                     | 8                          |
| Region B   | 18                     | 8                          |
|            | 13                     | 13                         |
| Region C   | 18                     | 8                          |
| Region D   | 13                     | 13                         |
| eµ channel | Electron pt            | Muon p <sub>T</sub>        |
| Region A   | 12                     | 8                          |
| Region B   | 7                      | 18                         |

Brett Jackson (University of Pennsylvania)