

MINOS Search for Sterile Neutrinos

Adam Aurisano University of Cincinnati for the MINOS Collaboration

> DPF 2013 Santa Cruz, California 08/16/2013

MINOS Overview

 ~320 kW NuMI neutrino beam from 120 GeV Main Injector-accelerated protons

- Neutrino energy spectrum measured with two functionally identical iron-scintillator tracking calorimeters:
 - Near Detector at Fermilab
 - 1km away from target
 - 1 kton mass
 - Far Detector, deep underground in the Soudan mine
 - 735 km away
 - 5.4 kton mass
- Compare Far Detector observations with extrapolation of Near Detector measurement to study neutrino oscillations

Sterile Neutrinos

- Preferred explanation for ν_{μ} CC disappearance is ν_{μ} oscillating into ν_{τ}
 - θ_{13} is nonzero, so a small fraction oscillates into ν_e
- Oscillations into a new fourth neutrino flavor are not excluded, but:
- Measurements of Z⁰ width at LEP => only 3 light active neutrinos \rightarrow 4th neutrino flavor has no weak interactions
 - =>Sterile neutrino (v_s)
- Short-baseline experiments, like LSND and MiniBooNE are consistent with a large mass splitting $(\Delta m^2 \sim 1 \text{ eV}^2)$, and therefore additional neutrino flavors

Looking for Sterile Neutrinos

Reconstructed NC energy spectrum

Strategy 1: 3500 ----- No $\nu_{\rm s}$ Neutral current interaction rate is the same for With ν_s mixing 3000 the three active flavors \rightarrow standard 2500 oscillations do not change NC rate 2000 • $v_{\mu} \rightarrow v_{s}$ oscillations reduce the NC rate as v_{s} 1500 do not interact in the detector Look for NC disappearance relative to 3-flavor 1000 predictions 500 Toy Simula Model independent Reconstructed energy /GeV ↓ v Strategy 2: ¹ 0.8 ک ط Sterile oscillations add modulations to standard 3-flavor picture, even in CC interactions • Fit both NC and CC spectra to the 4-flavor 0.4 No sterile neutrinos model 0.2 $\Delta m_{43}^2 = 2 \times 10^{-2} \text{ eV}^2$, $\sin^2(2\theta_{24}) = 0.2$ Constrain sterile mixing parameters

20

10

15

Energy / GeV

Accumulated Beam Data

Neutrino Running Higher Energy Neutrino Running Antineutrino Running

Event Topologies

Charged Current v_{μ} events

- long μ track, hadronic activity near event vertex
- neutrino energy from sum of muon energy (range or curvature) and shower energy

$$\frac{\sigma(\mathrm{E})}{E} \approx 5\%$$
(range), 10%(curvature)

Neutral Current events

- short diffuse showers
- shower energy from calorimetric response

ND Pre-Selection

 High event rate in Near Detector requires time and spatial slicing, and may cause split events

- Mitigated in the analysis by applying pre-selection cuts:
 - Fraction of pulse height in slice > 50%
- Activity in > 3 consecutive planes •Reduces poorly reconstructed background $(E_{shw reco}/E_{shw true} < 0.3)$ with $E_{reco} < 1$ GeV

NC Event Selection

NC/CC event separation achieved via cuts on topological variables

- Same selection applied to data and MC in Far Detector
- CC events are selected from events failing NC selection
- CC selection criteria are the same as in the standard ν_{μ} disappearance analysis see A. Radovic's talk

ND NC Energy Spectrum

Main background originates from inelastic (high-y) v_{μ} CC events

NC events selected with 88% efficiency and 62% purity in FD

Data and MC differences smaller than systematic uncertainties

97% of ν_e CC events are classified as NC

Far/Near Extrapolation

- The measured Near Detector energy spectrum is used to predict the Far Detector spectrum via the Far/Near Ratio method
- The method uses the ND data without relying on a specific parameterization

$$FD_{i}^{predicted} = \frac{FD_{i}^{MC}}{ND_{i}^{MC}} ND_{i}^{Data}$$

- Correct each energy bin in the FD MC using the ND data/MC differences as a scale factor
- Simple, robust to most systematic uncertainties
- FD data spectrum blinded until analysis procedures defined to avoid prediction biases

FD Energy Spectrum

- CC background in FD prediction is oscillated at the 2012 MINOS v_{μ} CC disappearance best fit values for Δm_{32}^2 and $\sin^2(2\theta_{23})$
 - Both upper and lower octant values of θ_{23} are considered (upper shown here)

•
$$\theta_{13} = 9^\circ$$
 and $\delta = 0$

200 MINOS NC-like Far Detector Data Monte Carlo Prediction 150 Events / GeV Systematic Uncertainty v CC Background Beam v Background 100 v_a appearance v. appearance 10.56 × 10²⁰ POT $2.41 \times 10^{-3} \text{ eV}^2$ 50 $(2\theta_{22}) = 0.95$ 0 5 10 15 20 n E_{reco} (GeV)

No depletion of neutral current events observed

Observed: 1221 events Expected: 1183 ± 34(stat) ± 36(syst) events

Comparison to 3-Flavor Predictions

 $R = \frac{N_{data} - \sum}{S_{NC}}$

Compare the NC energy spectrum in FD data (10.56 $\times 10^{20}$ POT exposure) with the expectation from standard 3-flavor neutrino oscillation physics using the *R* statistic

No NC disappearance $\Rightarrow R = 1$

FD predictions are obtained using the Far/Near ratio extrapolation method and assuming:								
Δm ² ₃₂ = 2.41x10 ⁻³ eV ²			$\theta_{23} = 51^{\circ} (up)$	$\theta_{13} = 9$	$\theta_{13} = 9^{\circ}$			
∆m ² ₂₁ = 7.59x10 ⁻⁵ eV ²		θ ₁₂ = 35°		δ _{CP} =	$\delta_{_{\rm CP}}$ = 0° Normal mass hierarchy			
	E _{reco} (GeV)	R ± stat ± syst	NC	ν_{μ} CC	v_{τ} CC	Beam ν _e CC	ν _e App. CC	Data
	0-200	$1.05 \pm 0.05 \pm 0.06$	771	289	18	50	55	1221
	3-200	$1.01 \pm 0.07 \pm 0.07$	397	237	12	46	34	731
	0-3	$1.09 \pm 0.06 \pm 0.08$	374	52	5	4	21	490

Predicted CC

background from all flavors

interaction signal

4-Flavor Analysis

- Assume 3+1 model
 - one additional sterile neutrino and an additional neutrino mass scale
 - Extend mixing matrix with extra angles and phases
- For simplicity, fix parameters MINOS is not sensitive to, $\delta_1, \delta_2, \delta_3$, and θ_{14} , to zero

$$\theta_{23}, \theta_{24}, \theta_{34}, and \Delta m_{32}^2$$
 are varied

- Fit both the NC and CC spectra to determine sterile mixing parameters
- Δm_{43}^2 requires extra consideration \rightarrow unlike 3-flavor oscillations, depending on the value of Δm_{43}^2 , oscillations can be significant in the near detector
 - Can break down into a small, medium and large $\Delta m^2_{_{43}}$ regimes

13

Small Δm_{43}^2 Oscillations

At small Δm_{43}^2 , oscillations occur in the far detector at high energies (but not in the near detector). The largest effect is visible where beam flux uncertainties are least well known.

Requires more work to understand beam flux uncertainties at high energies

Medium Δm^2_{43} Oscillations

At medium Δm_{43}^2 , there are no oscillations at the near detector, but those in the far detector are rapid. The effect averages out creating an overall deficit \rightarrow effectively a counting experiment

For the following results, we fix $\Delta m_{43}^2 = 0.5 \text{ eV}^2$ to remain in the "counting experiment" regime

Large Δm_{43}^2 Oscillations

At large Δm_{43}^2 , there are significant oscillations in the near detector and a constant deficit in the far detector

Requires more work to incorporate near detector oscillations and varying pion decay position into the F/N ratio

4-Flavor Results

mixing \rightarrow set limits

Slight preference for upper octant

• 90% confidence level allowed regions for v_{s} mixing

• Fit only at $\Delta m_{43}^2 = 0.5 \text{ eV}^2$ to avoid near detector oscillations

4-Flavor Results: 1D Limits

• 90% confidence level limits from 1D $\Delta\chi^2$ projections

• Fit only at $\Delta m_{43}^2 = 0.5 \text{ eV}^2$ to avoid near detector oscillations

MINOS+

In addition to analysis improvements and the incorporation of antineutrino running MINOS data, the MINOS detectors will continue to operate in the NOvA beam.

MINOS+ will enhance the high energy tail, where sterile neutrino searches have most statistical power.

Conclusions

•MINOS is making very important contributions to the body of knowledge on sterile neutrinos

- From measurement of the neutral current rate in a sample of 10.56x10²⁰ POT of NuMI neutrino running, MINOS finds:
 - •*R* = 1.05 ± 0.05(stat) ± 0.06(syst) (Upper octant: 0-200 GeV)
 - R = 1.07 ± 0.05(stat) ± 0.06(syst) (Lower octant: 0-200 GeV)
 - Results consistent with no oscillation into sterile neutrinos
- •Using a four-flavor shape analysis of neutral current and charged current samples, MINOS sets limits on sterile mixing angles (limits valid at $\Delta m_{43}^2 = 0.5 \text{ eV}^2$):
 - $\theta_{_{34}}$ < 24° at 90% CL
 - $\theta_{24} < 5^{\circ}$ at 90% CL
 - $37^{\circ} < \theta_{_{23}} < 54^{\circ}$ at 90% CL
- Actively working to incorporate ND oscillations and varying baseline in formalism
- •MINOS+ will improve the search by enhancing the high-energy tail \rightarrow stay tuned!

BACKUP

CC Spectra

FD Energy Spectrum: Lower Octant

- CC background in FD prediction is oscillated at the 2012 MINOS v_{μ} CC disappearance best fit values for Δm_{32}^2 and $\sin^2(2\theta_{23})$
 - Both upper and lower octant values of θ_{23} are considered (upper shown here)

•
$$\theta_{13} = 9^\circ$$
 and $\delta = 0$

No depletion of neutral current events observed

Observed: 1221 events Expected: 1168.48 ± 34.18(stat) ± 36.13(syst) events

3-Flavor Analysis: Lower Octant

Compare the NC energy spectrum in FD data (10.56 $\times 10^{20}$ POT exposure) with the expectation from standard 3-flavor neutrino oscillation physics using the *R* statistic

FD predictions are obtained using the Far/Near ratio extrapolation method and assuming:

 $\theta_{23} = 38^{\circ}$ (upper octant) $\Delta m_{21}^2 = 7.59 \times 10^{-5} \text{ eV}^2$ $\Delta m_{32}^2 = 2.41 \times 10^{-3} \text{ eV}^2$ $\theta_{12} = 35^{\circ}$ $\delta_{CP} = 0^{\circ}$ $\theta_{13} = 9^{\circ}$ Normal mass hierarchy NC v_u CC $R \pm stat \pm syst$ Data E_{reco} Beam v_{τ} CC v_e App. v CC (GeV) CC 0-200 37 $1.07 \pm 0.05 \pm 0.06$ 771 292 18 50 1221 3-200 $1.03 \pm 0.07 \pm 0.07$ 14 46 731 397 238 23 0-3 $1.11 \pm 0.06 \pm 0.08$ 14 374 54 5 4 490

No NC disappearance \Rightarrow *R*=1

FD NC Selection Variables

Systematic Uncertainties

Pre-Selection

- Beam quality and detector quality cuts
 - Beam positioning, magnetic horns energized, detectors running within operational parameters
 - Cosmics removed using timing and steepness
- Event vertex reconstructed within the fiducial volume of the detectors
 - Fiducial volume optimized for containment of hadronic showers

Event Topologies

Charged Current v_e events

- compact shower event with typical electromagnetic profile
- shower energy from calorimetric response

$$\frac{\sigma(\mathbf{E})}{E} \approx \frac{22\%}{\sqrt{\mathbf{E}}}$$

Neutral Current events

- short diffuse showers
- shower energy from calorimetric response

