Search for pair production of new heavy quarks that decay to a Z boson and a third generation quark in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

ATL-COM-CONF-2013-070

Joseph S. Virzi (LBNL)

DPF 2013 Santa Cruz, Ca

Overview

See M.S.Cooke's talk

- Introduction and Motivation
- Strategy
- Signal and Control Regions
- Systematic Uncertainties
- Results and Conclusions
- Analysis uses 14.3 fb⁻¹ of 2012 data at 8 TeV
- Use $M_Q = 600 \text{ GeV}$ as representative example - Analysis covers 350 GeV $\leq M \leq 850 \text{ GeV}$

Analysis Object Definitions

- Light leptons (electrons and muons)
 - pT ≥ 25 GeV
 - − Isolation: $\Delta R \ge 0.4$ to any jet

Standard Selection Criteria

- Electrons have $|\eta| < 2.47$ and exclude crack (1.37 < $|\eta| < 1.52$)
- Muons have $|\eta| < 2.5$
- Jets
 - Anti-Kt algorithm with Radius Parameter D=0.4
 - pT ≥ 25 GeV
 - |η| < 2.5
 - Overlap removal against electrons using $\Delta R = 0.2$
- B-tagging
 - Using a multivariate tagger based on track impact parameter and displaced secondary vertices (MV1)
 - MV1 weight at 70% operating point (MV170)
- <u>u, d, c, s, b denote Standard Model (</u>SM) quarks
- T, B denote new t-like, b-like quarks, respectively

Introduction

- Standard Model (SM) contains 3 generations of leptons and quarks
- Fermions are chiral
 - Left-handed fermions transform as doublets under EW gauge group $(u,d)_{I}$
 - Right-handed fermions transform as singlets
- Many beyond-SM models include new breed of quarks (fermions) where both left- and right-handed components transform in the same manner
 - Vector-like

 \mathcal{U}_R

 d_{R}

Flavor Changing Neutral Currents?

- Strong constraints on FCNC for <u>chiral</u> fermions
 - − 2 and 3 generations \rightarrow GIM-suppression
 - 4th generation somewhat less stringent
- Chiral fermion FCNC constraints not applicable to vectorlike fermions
 - F. del Aguila, M. Perez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011, arXiv:hep-ph/0007316
 - J.A. Aguilar-Saavedra, R. Benrik, S. Heinemeyer, M. Perez-Victoria, A handbook of vector-like quarks: mixing and single production, arXiv:1306.0572

OUR SEARCH FOCUSES ON DECAYS VIA THE Z⁰ BOSON

New Heavy Vector-Like Quark (VLQ) Production

Vector-Like Quarks What Would They Look Like?

- (T, B) form a weak-isospin doublet?
- (X,T) and/or (B,Y) for weak-isospin doublet?
- T and/or B singlets?

SEARCH STRATEGY IS THE SAME FOR ALL SCENARIOS WHERE NEUTRAL CURRENT DECAYS ARE POSSIBLE

Heavy VLQ Decays Branching Ratios

Reasonable neutral current branching ratios

Better for B than for T

6/11/2013

J.S.Virzi (LBNL)

Heavy Vector-Like Quark Signature "Broad Strokes" Picture - Strategy

- On-shell, high P_T (boosted) leptonic Z
 - $-76 \text{ GeV} \le M_Z \le 106 \text{ GeV}$
 - $pT(Z) \ge 150 \text{ GeV}$
- Select events with ≥2 jets
- Two SM b-quarks →b-jets
- Large additional energy $H_T = \Sigma_{jet} p_T$
- Quark mass gives structure to invariant mass of decay products - M(Zb)

N_{tag} as Discriminating Variable

b-tagged jet multiplicity

- Events with $Z + \ge 2$ jets
- Signal rich in b-jets
- **Background relatively poor**

Background much softer

$H_{\rm T}$ as a Discriminating Variable

• Signal exhibits enhanced structure at large $\rm H_{T}$

Invariant Mass of Zb System

- Signal exhibits structure in invariant mass distribution
- Choose highest p_T b-jet as b-candidate
- Works for both T and B

Background Details

- Z+jets modelled with Sherpa and AlpGen
 - Sherpa used for baseline analysis
 - Extensive comparisons of Sherpa and AlpGen

DOMINANT BACKGROUND

- Sherpa uses CT10NLO Parton Distribution Function (PDF)
- AlpGen uses CTEQ6L1 PDF
- Top/anti-top matrix element (ME) modelled by POWHEG
 - Parton Shower (PS) and Hadronization by Pythia
 - CT10NLO PDF
- Diboson ME modelled by AlpGen
 - PS and Hadronization by HERWIG
- Wt and s-channel single top ME production modelled by MC@NLO
 - PS and Hadronization by HERWIG
- t-channel single top ME modelled by ACER MC
 - PS and Hadronization by Pythia
- All backgrounds normalized to NLO cross sections

Monte Carlo Modelling of Background

- Implement correction process to bring MC closer to data
- MC shapes and rates should agree w/data close to signal region
- Minimize signal contamination in the control region (defined next)

Control Regions/Monte Carlo Corrections

- Reminder: events selected with $Z + \ge 2$ jets
- Z+jets sample binned into N_{tag}=0, 1 or ≥2
- Z+jets normalized so that total background prediction for $p_T(Z) \le 100$ GeV agrees with data in each N_{tag} bin
- Significant residual slope in p_T(Z) distribution observed (previous slide)
 - Similar slope in each N_{tag} bin
 - Derive new reweight function $F(p_T)$ in N_{tag} =1 bin
 - Apply $F(p_T)$ to $N_{tag} \ge 2$ bin
- Results of reweights shown next

CONTROL

REGIONS

CORREC

Control Regions

- N_{tag}=0, 1
- p_T(Ž) < 100 GeV
- LHS is H_T after $p_T(Z)$ correction
- RHS is M(Zb) after $p_T(Z)$ correction

Final Signal Region Distributions

All corrections applied

Final M(Zb) Distribution

Observed distribution consistent with SM prediction

6/11/2013

J.S.Virzi (LBNL)

Systematic Uncertainties in the M(Zb) Normalization

	Z+ jets	tī	Other bkg.	$B\bar{B}$ (600 GeV)	$T\bar{T}$ (600 GeV)
Luminosity	1.7	3.6	3.6	3.6	3.6
Cross section	7.0	11	28	-	-
Jet Reco.	12	14	15	4.8	5.8
<i>b</i> -tagging	7.1	13	13	11	10
e Reco.	1.8	6.8	3.0	3.9	3.8
μ Reco.	1.8	2.3	4.9	4	4.2
Z+ jets rate corr.	9.1	_	_	_	_
$Z+$ jets $p_{\rm T}(Z)$ corr.	19	—	_	_	_

- Relative uncertainties in %
- Z+jets rate correction uses p_T(Z) ≤ 100 GeV in N_{tag}=1 bin
 Uncertainty assessed by comparing use of 50 ≤ p_T(Z) ≤ 150 GeV instead
- Z+jets p_T(Z) correction uses reweighting, derived in the N_{tag}=1 bin, applied to N_{tag}=2 bin
 - Uncertainty assessed by comparing use of N_{tag} =0 bin instead
 - Large statistical component

Results for T Exclusion Limits

- (T,B) doublet scenario M(T) ≤ 680 GeV excluded at 95% CL
- T singlet scenario M(T) ≤ 585 GeV excluded at 95% CL

6/11/2013

J.S.Virzi (LBNL)

B singlet scenario M(B) ≤ 645 GeV excluded at 95% CL

Conclusions

- The search for Vector-Like Quarks did not produce a significant deviation from the predicted SM background in the M(Zb) distribution
- Cross section exclusion plots derived
 Expected exclusion consistent with observed exclusion
- Branching ratio exclusion plots derived
- Assuming a T(B) singlet model, a new vector-like quark is excluded for with M_Q ≤ 585 GeV(645 GeV)
- Assuming a (T, B) doublet model, a new vector-like quark is excluded with M_Q ≤ 680 GeV(725 GeV)

2D Exclusion Limits for Branching Ratios

• Assumes BR(T \rightarrow Ht)+BR(T \rightarrow Wb)+BR(T \rightarrow Zt)=1

6/11/2013

J.S.Virzi (LBNL)

2D Exclusion Limits for Branching Ratios

• Assumes $BR(B \rightarrow Hb) + BR(B \rightarrow Wt) + BR(B \rightarrow Zb) = 1$

6/11/2013

J.S.Virzi (LBNL)

Backup Slides

Some Previous Searches for New Heavy Quarks

• T→Wb

- ATLAS Collaboration
 - Phys.Lett. B 718 (2013) 1284 arXiv:12105468
- ATLAS update <u>https://cds.cern.ch/record/1553199</u>

• T→Zt

- CMS Collaboration
 - Phys.Rev.Lett. 107 (2011)271802 arXiv:1109.4985
- T→Ht
 - ATLAS-CONF-2013-018
- T→Zb
 - ATLAS Collaboration
 - Phys.Rev.Lett. 109 (2012) 071801 arXiv:1204.1265
- T→Wb/tH/tZ
 - CMS Collaboration
 - <u>http://cds.cern.ch/record/1557571</u>

The Analysis

- Select events with Z and ≥ 2 jets
 - Z→ee (148K events)
 - − $Z \rightarrow \mu \mu$ (203K events)
 - − 76 GeV ≤ M(Z \rightarrow light leptons) ≤ 106 GeV
- Signal Region (SR) details follow
 - − Ntag \ge 2
 - pT(Z) > 150 GeV
 - $H_{T} > 600 \text{ GeV}$
- Discriminating variable is invariant mass of Z + hardest b-jet
 - M(Zb)
- Control Regions (CR)
 - Compare Monte Carlo (MC) modelling of background against data
 - pT(Z) < 100 GeV</p>
 - Ntag = 0 or 1
- Normalization of Monte Carlo SM background to DATA
- CL_s exclusion using M(Zb) templates

WORKS FOR BOTH NEW TOP-LIKE AND BOTTOM-LIKE QUARKS!

Event Displays

Event Yields Before/After Corrections

	$Z+\geq 2$ jets ($N_{tag}=1$)	$p_{\rm T}(Z) > 150 { m ~GeV}$	$H_{\rm T}({\rm jets}) > 600~{\rm GeV}$
Z +light (before $p_{\rm T}$ corr.)	$17,000 \pm 1,200$	$1,370\pm150$	78.3 ± 5.9
Z +light (after $p_{\rm T}$ corr.)	$16,700 \pm 1,500$	$1,170\pm190$	68.0 ± 15.3
Z+bottom (before $p_{\rm T}$ corr.)	$15,000 \pm 1,400$	$1,290\pm170$	56.3 ± 5.0
Z+bottom (after $p_{\rm T}$ corr.)	$14,700 \pm 1,400$	$1,110\pm180$	48.8 ± 11.1
$t\bar{t}$	$2,700\pm300$	61 ± 9	7.8 ± 2.1
Other SM	900 ± 300	135 ± 45	14.0 ± 5.2
Total SM (before $p_{\rm T}$ corr.)	$35,600\pm 2,000$	$2,850\pm230$	156.4 ± 9.3
Total SM (after $p_{\rm T}$ corr.)	$35,000 \pm 2,000$	$2,470\pm265$	138.5 ± 19.6
Data	34,955	2,480	121
$B\bar{B} (m_B = 600 \text{ GeV})$	22.5 ± 3.4	18.7 ± 2.9	13.0 ± 2.4
$T\bar{T} (m_T = 600 \text{ GeV})$	15.2 ± 2.1	12.0 ± 1.6	8.0 ± 1.3

Event Yields After Selection

	$Z+ \ge 2$ jets $(N_{tag} \ge 2)$	$p_{\mathrm{T}}(Z) > 150 \mathrm{~GeV}$	$H_{\rm T}({\rm jets}) > 600 {\rm ~GeV}$
Z+light	850 ± 240	58 ± 17	4.3 ± 1.8
Z+bottom	3380 ± 470	301 ± 55	17.8 ± 4.8
$t\bar{t}$	1730 ± 320	31 ± 6	5.1 ± 1.4
Other SM	190 ± 60	29 ± 10	3.0 ± 1.2
Total SM	$6,150\pm 620$	419 ± 59	30.2 ± 5.3
Data	6,097	386	26
$B\bar{B} (m_B = 600 \text{ GeV})$	31.0 ± 4.3	25.7 ± 3.6	19.8 ± 2.7
$T\bar{T} (m_T = 600 \text{ GeV})$	21.9 ± 2.8	17.1 ± 2.2	12.2 ± 1.7