New Results from SDSS-III BOSS: cosmic expansion and growth of structure

Beth Reid Hubble Fellow Lawrence Berkeley National Lab

in collaboration with Martin White, Will Percival, Lado Samushia, Baryon Oscillation Spectroscopic Survey [BOSS] collaboration

Outline

- Baryon Oscillation Spectroscopic Survey (BOSS) status
- Measuring geometry and growth with redshift surveys
- BOSS DR9 results and cosmological implications
- DRI0/II coming soon!

SDSS-III Baryon Oscillation Spectroscopic Survey

- 10,000 deg², 1.35M new redshifts
- %-level distances at
 z = 0.35, 0.6, 2.3

QUASARS

BOSS galaxies

SDSS Main SDSS LRGs

Beth Reid

The BAO standard ruler: [see Mariana Vargas-Magana's talk]

$r_s = 151.4 \pm 0.66 Mpc$ (Planck 2013)

Planck 2013 #16

Beth Reid

APS DPF 2013

SDSS-III Baryon Oscillation Spectroscopic Survey Ly-α forest BAO detection

- Busca et al. 2012, Slosar et al. 2013, Kirkby et al. 2013
- H(z=2.3) to <4%!

Slosar et al. 2013

APS DPF 2013

SDSS-III Baryon Oscillation Spectroscopic Survey

• 10,000 deg², 1.35M new redshifts

QUASARS BOSS galaxies SDSS Main

BOSS survey status

Results presented today A_{eff}: 3275 deg² Public! data.sdss3.org 6161 deg²

Currently analyzing 8387 deg²

APS DPF 2013

Motivation

- There is *much* more information in this 3d map than the BAO feature
- Rocky III: RSD is "among the most powerful ways of addressing whether the acceleration is caused by dark energy or modified gravity"

Let's start simple: what can we extract from the full 2d correlation function $\xi(r_{\sigma}, r_{\pi})$?

Reid et al. 2012

 r_{\perp} (h⁻¹ Mpc)

Beth Reid

APS DPF 2013

Outline

- Baryon Oscillation Spectroscopic Survey (BOSS) status
- Measuring geometry and growth with redshift surveys
- BOSS DR9 results and cosmological implications
- DRI0/II coming soon!

Geometric constraints from galaxy surveys

Observer space: ra, dec, z

depends on H(z) for z in [0, z_{max}]

Beth Reid

APS DPF 2013

BAO standard ruler

• The BAO feature in the angle-averaged correlation function constrains $\alpha = [D_V(z_{eff})/r_s]/[D_V(z_{eff})/r_s]_{fiducial}$

comoving angular diameter distance = $(I+z) D_A(z)$

Beth Reid

Alcock-Paczynski effect

• Even without a standard ruler, comparing clustering along and perpendicular to the LOS allows us to measure $D_A * H$

comoving angular diameter distance = $(I+z) D_A(z)$

APS DPF 2013

Redshift Space Distortions (RSD)

real to redshift space separations: $\chi(z) = \chi_{true} + v_p/aH$

 $f = d \ln \sigma_8 / d \ln a \approx \Omega_m{}^\gamma$

APS DPF 2013

Putting it all together

isotropic dilation

r⊥ (h⁻¹ Mpc)

APS DPF 2013

Information compression step 2: Legendre Polynomial moments $\xi_{\ell}(s)$

$$\mu = r_{LOS} / (r_{LOS}^2 + r_{\perp}^2)^{1/2}$$

Beth Reid

APS DPF 2013

50 s (h⁻¹ Mpc)

anisotro

angle-average

(S)

150

150

100

100

50

 $s^{2}\xi_{2}(s)$

100

80

60 H

40

20

0

-20

-40 20

-20

-40

-60

-80-

-100

-120

-140**-**

 $\xi_2(s) (h^{-1} \text{ Mpc})^2$

s² ξ₀(s) (h⁻¹ Mpc)²

Outline

- Baryon Oscillation Spectroscopic Survey (BOSS) status
- Measuring geometry and growth with redshift surveys
- BOSS DR9 results and cosmological implications
- DRI0/II coming soon!

Anderson et al. 2012: fits to α for "reconstructed" $\xi(s)$ and P(k)

Reid et al.: $\alpha = 1.023 \pm 0.019$

Beth Reid

APS DPF 2013

BAO Hubble Diagram

BAO Hubble Diagram: Comparison with CMB, H₀, and SN

APS DPF 2013

BAO Hubble Diagram: Comparison with Planck

+ I σ in $\Omega_m h^2$ (Planck)

Beth Reid

APS DPF 2013

DR9 ξ_0 BAO + ξ_2 : D_A, H, f σ_8 at z=0.57

- $f\sigma_8(0.57) = 0.43 \pm 0.069$
- $H(0.57) = 92.4 \pm 4.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- $D_A(0.57) = 2190 \pm 61 \text{ Mpc}$

-- CMB P(k) shape prior -- $b\sigma_8$ -- σ^2_{FOG}

Beth Reid

APS DPF 2013

DR9 Results

 Modeling ξ(s,μ) buys you a lot of statistical power on dark energy parameters and testing gravity

DR9 Results

 Modeling ξ(s,μ) buys you a lot of statistical power on dark energy parameters and testing gravity

Beth Reid

APS DPF 2013

DR9 Results

• Modeling $\xi(s,\mu)$ buys you a lot of statistical power on dark energy parameters and testing gravity

Samushia, BR, et al., 2012

lower D_A(z=0.57), more growth of structure from z=1091 to z=0.57 APS DPF 2013

Dark Energy or modified gravity?

- CMASS geometric constraints tighten ΛCDM fσ₈ prediction, shift it up
- CMASS f σ_8 is low by ~ 1.5 σ

Samushia, BR, et al., 2012

APS DPF 2013

Future prospects

 Including 2d broadband P(k)/ξ(r) increases DETF FOM by factor of ~ 2-4 and allows modified gravity tests using RSD, if we can control the theoretical uncertainties

DRII coming soon...

APS DPF 2013

EXTRAS

Modeling the full shape of $\xi_{0,2}$ (Reid & White 2011)

• $b\sigma_8$, $f\sigma_8$ determine amplitude of $\xi_{0,2}$

σ₈: amplitude of matter fluctuations

b: unknown conversion factor between galaxy and matter fluctuations

 $f = d \ln \sigma_8/d \ln a;$ conversion factor between matter and velocity fluctuations

 $-s^2 \ \xi_2(s)$ 100 80 $(h^{-1}\,{
m Mpc})^2$ $s^2 \ \xi_0(s)$ 20 Kaiser prediction Reid & White 'II vs 70 (Gpc/h)³ o **Sims** -20 [final BOSS is 5 (Gpc/h)³] 30 50 100 150 $s (h^{-1} \operatorname{Mpc})$

APS DPF 2013

Alcock-Paczynski has different scaledependence, distinguishable from RSD

APS DPF 2013

Beth Reid Dv stretches s axis

Dark Energy or modified gravity?

- Our strongest evidence for DE is from geometric measures: SNIa, BAO, H₀ + distance to CMB, AP, ...
 [probes homogeneous universe]
- We can distinguish modified gravity from exotic fluid in GR as the reason for cosmic acceleration by the growth of inhomogeneities

$$: \frac{d^2 G}{d \ln a^2} + \left(2 + \frac{d \ln H}{d \ln a}\right) \frac{dG}{d \ln a} = \frac{3}{2} \Omega_{\rm m}(a)G$$

Effect of intrahalo satellite velocities (aka "Fingers of God")

DR9 Battle plan: marginalize over nuisance parameter σ^2_{FOG} with hard prior informed by smallscale galaxy clustering

DRx: derive FOG velocity distribution directly from observed small-scale clustering

Beth Reid

APS DPF 2013

CMB precisely predicts full P(k), not just BAO feature

Planck 2013 #16

Beth Reid

dark matter dominated

r_s =151.4 ± 0.66 Mpc (Planck 2013)

APS DPF 2013