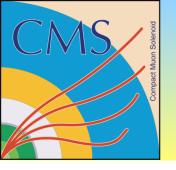
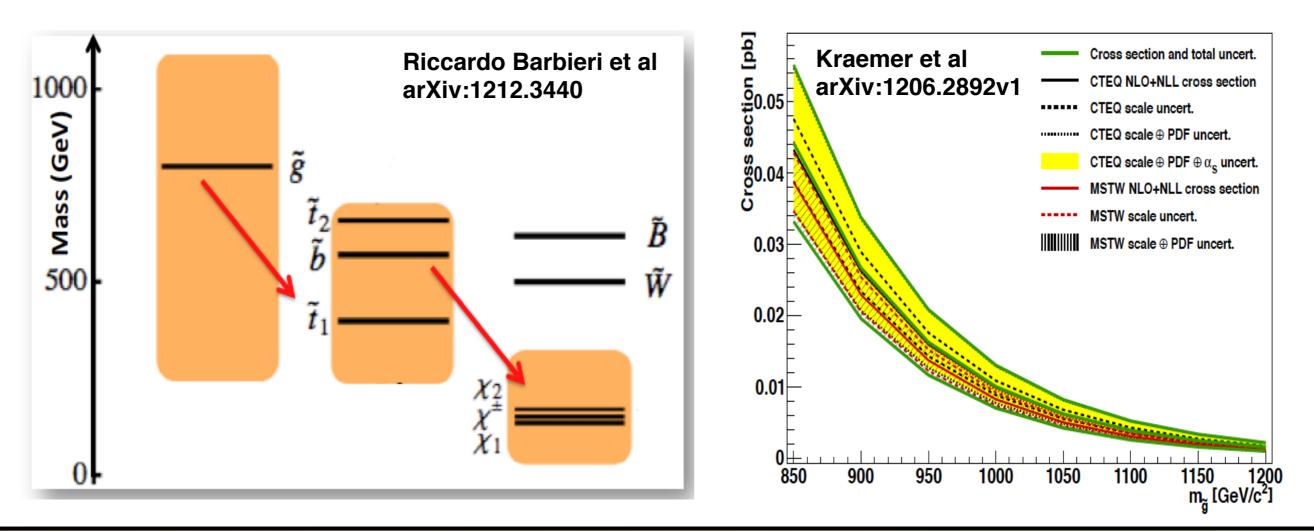

Search for SUSY with gluino pair production in allhadronic and single lepton final states at CMS

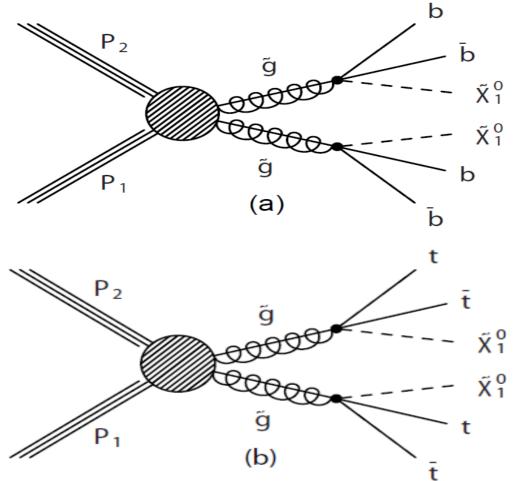
Thomas E. Danielson, University of California – Santa Barbara On behalf of the CMS Collaboration


Meeting of the American Physical Society(APS) Division of Particles and Fields(DPF) August 15, 2013

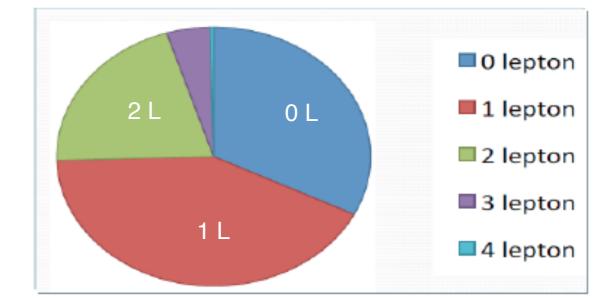

- Introduction: gluino pair production and natural SUSY
- All-hadronic search with b-tagging
- Single lepton searches with b-tagging
 Delta Phi (lepton, W) (DPhi) method
 Lepton Spectrum (LS) method

Introduction and natural SUSY

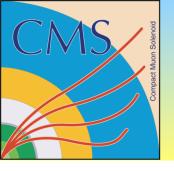
- Discovery of new boson consistent with Higgs particle has further shifted attention towards SUSY to solve the hierarchy problem.
- Various SUSY models lead to production of multiple b-jets, including natural models where 3rd generation squarks + gluinos must be light ($M_{\tilde{g}} < ~2 \text{ TeV}$), ($M_{t_{1,2},\tilde{p}_L} < ~1 \text{ TeV}$) 8 TeV LHC dataset can probe up to $M_{\tilde{q}} ~ 1.2 \text{ TeV}$
- R-parity conserving models provide a stable LSP (χ_1^0)


Natural SUSY with gluino pair production

These searches focus on natural SUSY models with multiple bjets in the final state


Simplified models with variable gluino, LSP mass

3-body decays from off-shell b and t squarks


- $\tilde{g}\tilde{g} \rightarrow b\bar{b}b\bar{b}\chi_1^0 \tilde{\chi}_1^0$ covered by all-hadronic search
- $\tilde{g}\tilde{g} \rightarrow ftft \, \tilde{\chi}_1^0 \tilde{\chi}_1^0$ covered by all-hadronic and single lepton searches

Lepton multiplicity of ftft $\tilde{\chi}\tilde{\chi}$ final state

U

Overview of all-hadronic search

- Signature: MET+b-jets(+more jets)
- Baseline Selection:

MET>125 GeV

 \geq 3 jets with p_T > 50 GeV, HT>400 GeV

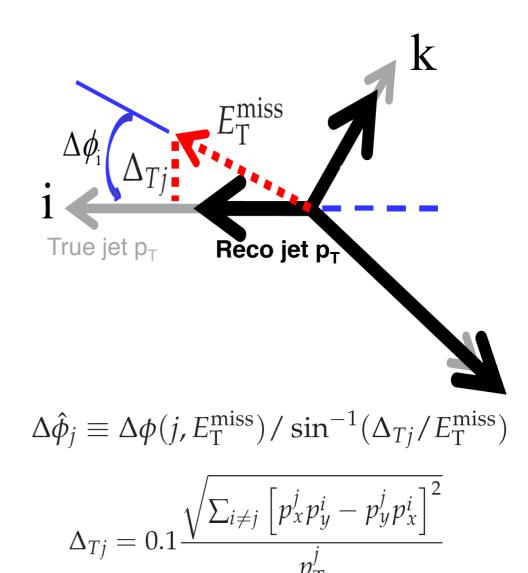
 \geq 2 jets with p_T > 70 GeV

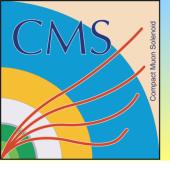
≥ 1 b-tagged jet

Selection for reducing background from W→Iv decays in top + W events

Veto isolated leptons with $p_T > 10 \text{ GeV}$

Veto isolated tracks with $p_T > 15 \text{ GeV}$


```
Further removes e/\!\mu, also suppresses single-prong \tau decays
```


Selection for reducing contributions from QCD events containing fake MET

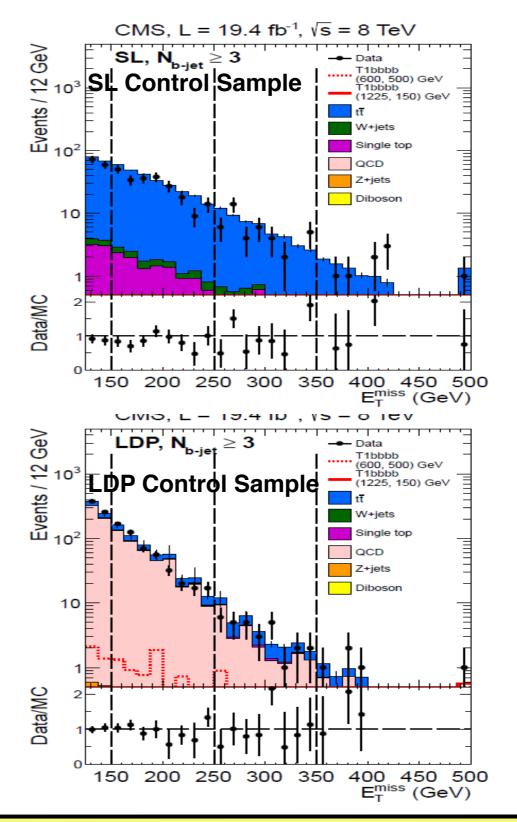
Normalized minimum $\Delta \phi$ (MET,jet1,2,3) $\Delta \hat{\phi}_{min} > 4$

CMS-SUS-12-024 arXiv:1305.2390

U

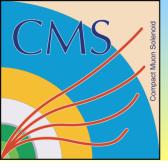
Estimating backgrounds for allhadronic search

ucsb

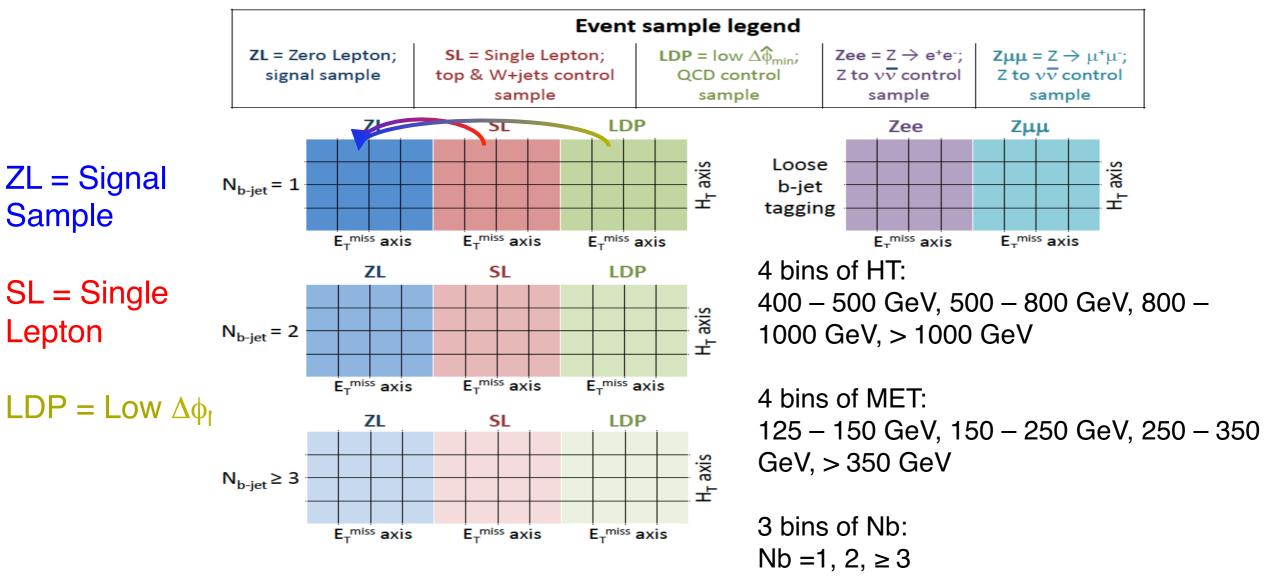

- Two background categories for hadronic search Backgrounds with real MET:
 - Dominant: semi-leptonic ttbar
 - Smaller: W+jets and single top
 - Small but irreducible: Z+jets with $Z \rightarrow_{VV}$
 - Backgrounds with fake MET (QCD multijet)
- For each background, define control sample

ttbar+W+single top (*ttWj*) : Invert e/μ veto to get single lepton (SL) control sample

Require $M_T(I,MET) < 100 \text{ GeV}$ to reduce signal, dilepton contamination

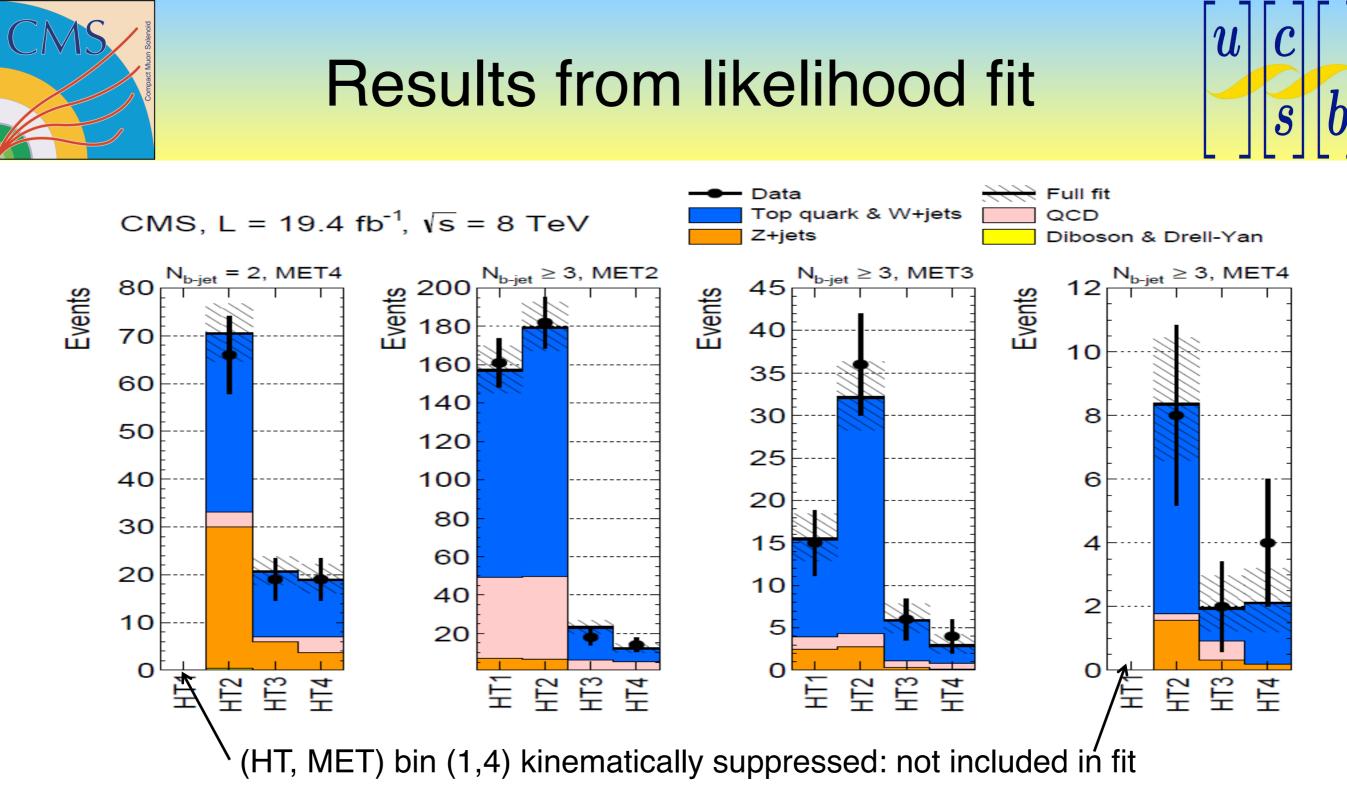

QCD : Invert cut on $\Delta \varphi_N$ to get Low Delta Phi (LDP) control sample

 $Z {\rightarrow_{VV}} : Z {\rightarrow} I^+ I^-$ control sample with loosened b-tag selection

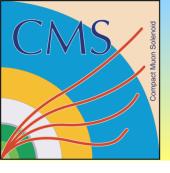


U Comparing signal sample to SM predictions CMS, L = 19.4 fb⁻¹, √s = 8 TeV CMS, L = 19.4 fb⁻¹, √s = 8 TeV CMS, L = 19.4 fb⁻¹, √s = 8 TeV Events Events / 50 GeV Events / 12 GeV ZL, $N_{b-jet} \ge 3$ $ZL, N_{b-jet} \ge 3$ ZL W+iets T1bbbb 600, 500) GeV (600, 500) GeV T1bbbb Single top T1bbbb T1bbbb (600, 500) GeV (1225, 150) GeV (1225, 150) GeV QCD T1bbbb Z+jets (1225, 150) GeV 10 Diboson Single top QCD 10³ Z+jets Z+iets Diboson Diboson 10 10 10^{2} Data/MC Data/MC Data/MC 1.2 0.8 150 200 250 300 350 400 450 500 500 1500 1000 2000 =2 ≥3 =1 N_{b-jet} E_T^{miss} (GeV) H_T (GeV)

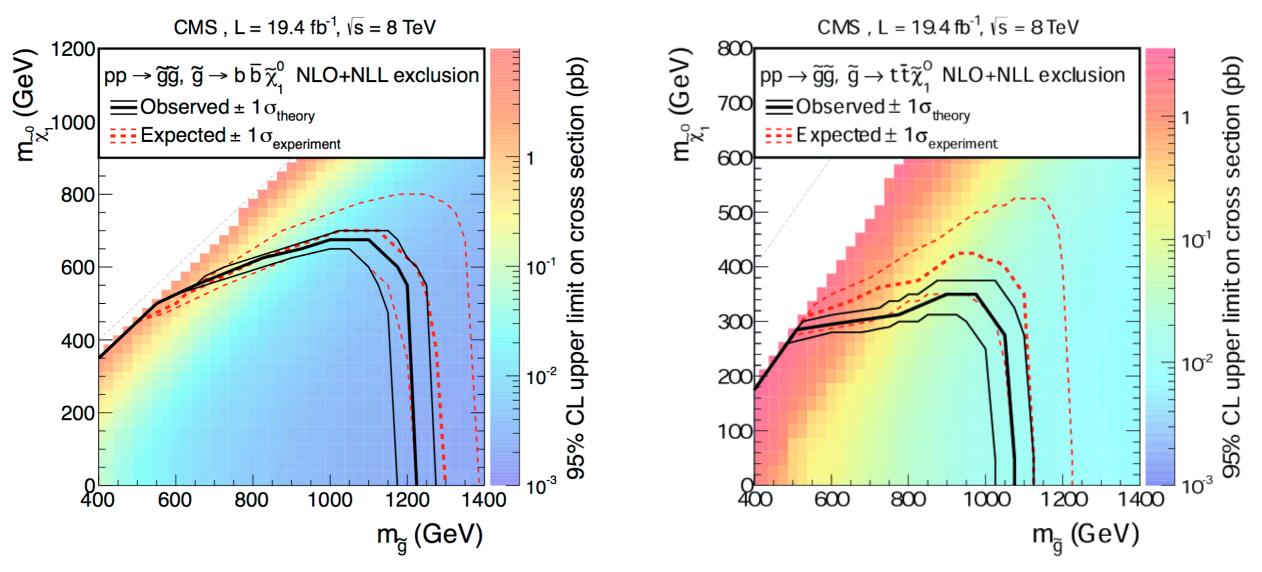
- Distributions in HT, MET, N_b well-described by SM MC
- Dominant contributions from ttbar, multijet QCD events
- Signal contributions on tails of these distributions



Likelihood fit for all-hadronic search

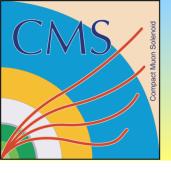


- Simultaneous fit to 4 HT bins, 4 MET bins and 3 N_b bins for signal and control regions
- Each bin of the signal sample has corresponding bins in the control samples
- Coherent treatment of signal and background yields in all regions
- Systematic uncertainties modeled with nuisance parameters

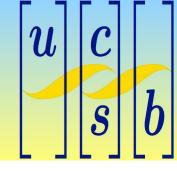

U

- Select bins in MET, HT, N_b with highest signal sensitivity, set N_{sig} set to zero
- Global fit to SM contributions matches observation

Exclusion limits for all-hadronic search



 Exclusion limits established using NLO cross section for g pair production, CL_s technique


In limit of light LSP, $\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ models with $M_{\tilde{g}} \sim 1200$ GeV excluded

Models with $\tilde{g} \rightarrow ft \tilde{\chi}_1^0$ final states excluded up to $M_{\tilde{q}} \sim 1100 \text{ GeV}$

U

Overview of single lepton search

CMS-SUS-13-007

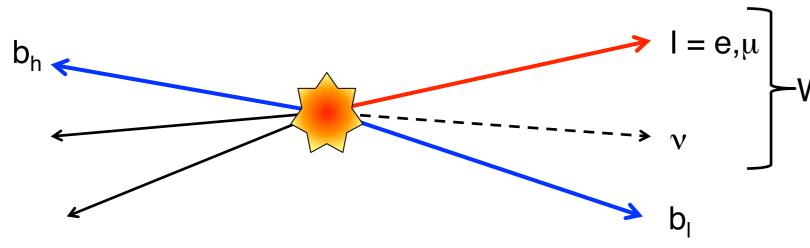
- Search for $\tilde{g}\tilde{g} \rightarrow ftft \tilde{\chi}_1^0 \tilde{\chi}_1^0$ SUSY signature
- Two complementary searches involvling single lepton + multijet final state

Delta Phi (Dphi) method: use $\Delta \varphi(W, \text{lep})$ as discriminating variable

Lepton Spectrum method: predict high-MET yields using high- $p_{\rm T}$ tail of lepton spectrum

Common selections for these searches

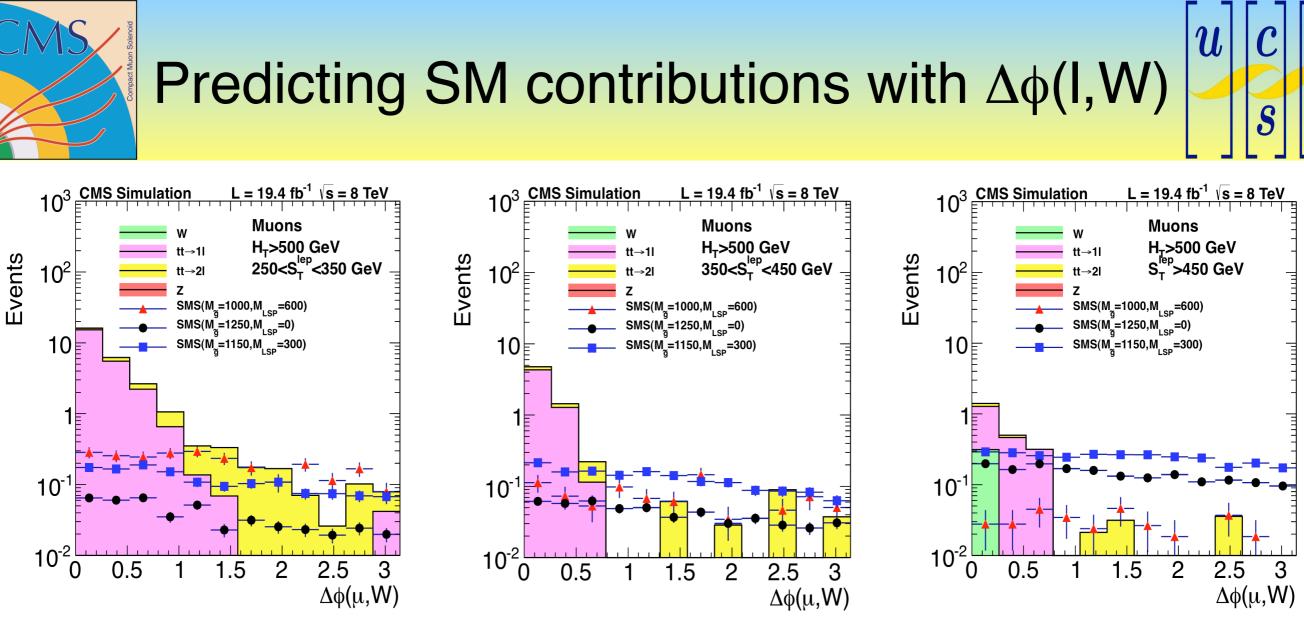
1 lepton [e or μ] ; p_T>20 GeV, l η l<2.4


Veto on 2nd loose lepton

• \geq 6 jets with p_T > 40 GeV, $l\eta l$ <2.4

≥ 2 b-tagged jets

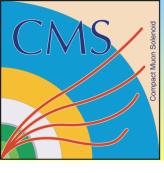
• HT > 500 GeV


Overview of DPhi method

Single lepton ttbar: kinematics V₁ contrain opening angle between lepton,W

Angle is smaller for boosted W's

- Key variables: $\Delta \phi(I,W)$ and $S_{T,lep} \equiv MET + p_{T,lep}$ Search regions: $\Delta \phi(I,W) > 1$ and $S_{T,lep} > 250$ GeV
- Search will be performed in bins of $S_{T,lep}$ and N_b
- Define two samples based on the jet multiplicity Control sample: $3 \le N_j \le 5$ (signal depleted) Signal sample: $N_j \ge 6$ (signal enhanced)



• Define R_{CS} ratio for separating signal from SM background $R_{CS} = \frac{signal}{N} = \frac{N(\Delta\phi(W, l) > 1)}{N(\Delta\phi(W, l) > 1)}$

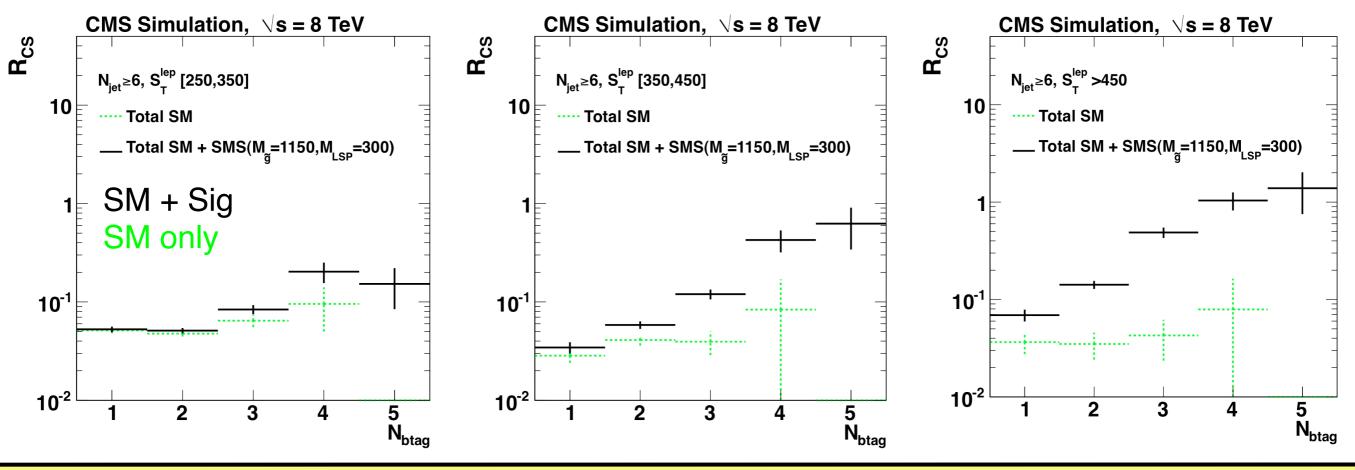
$$c_{S} = \frac{0}{control} = \frac{1}{N(\Delta\phi(W,l) < 1)}$$

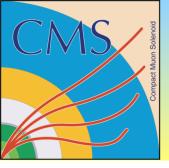
Typically small (< 0.1) for dominant SL ttbar background

Signal models expected to have much higher R_{CS} values

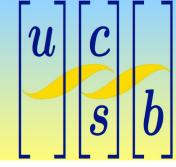
Characterizing dependence of R_{CS} on N_b

 Correction factor κ accounts for any dependence of R_{CS} on N_b

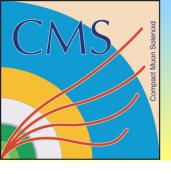

 $R_{CS}(N_{b}) = R_{CS}(N_{b} = 1) \cdot \kappa_{CS}(N_{b})$


 $R_{CS}(N_{b}=1)$ measured in data, κ evaluated from MC

• In absence of signal, R_{CS} has little dependence on N_b (κ ~1)


R_{CS} values for Nb = 1 control sample

		S_T^{lep} [GeV]	control	signal	R _{CS}
	SU	[250,350]	192	9	0.05 ± 0.02
	onj	[350,450]	55	2	0.04 ± 0.03
^a 8 [–]		>450	10	0	<0.1
N _{btag} :	tr.	[250,350]	169	6	0.04 ± 0.01
	lec	[350,450]	44	3	0.07 ± 0.04
		>450	17	0	< 0.06

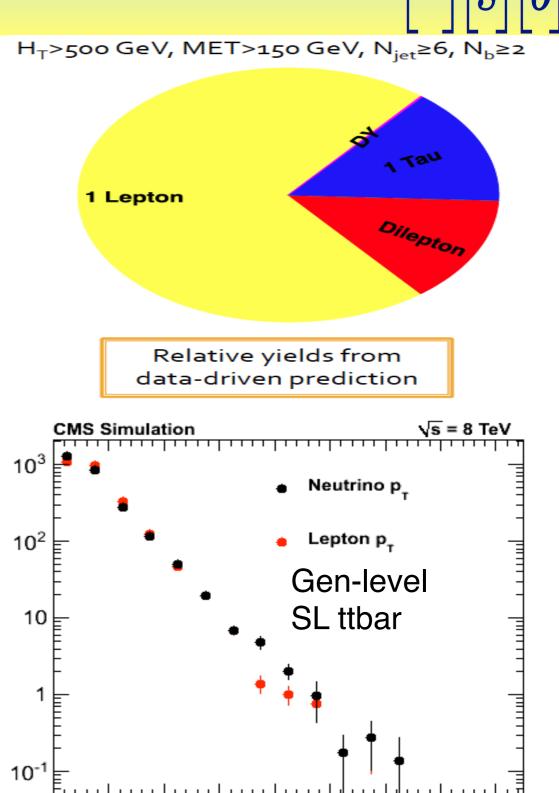

Results from DPhi method

		S ^{lep} _T [GeV]	control reg. data	prediction	observation
	SU	[250,350]	141	$6.00 \pm 2.23 \pm 2.40$	9
5	Muons	[350,450]	24	$1.37 \pm 1.12 \pm 1.19$	2
N _{btag} =2	Σ	>450	9	$0.0 \pm 0.66 \pm 0.66$	0
∇_{bt_i}	tr.	[250,350]	112	$3.83 \pm 1.75 \pm 1.84$	9
	Electr.	[350,450]	28	$2.74 \pm 1.86 \pm 2.02$	2
	Щ	>450	9	$0.0 \pm 0.42 \pm 0.42$	0
	su	[250,350]	28	$1.92 \pm 0.84 \pm 0.95$	0
<u>б</u>	Muons	[350,450]	13	$0.57 \pm 0.52 \pm 0.58$	0
8	Σ	>450	2	$0.0 \pm 0.22 \pm 0.22$	0
N _{btag}	tr.	[250,350]	45	$1.89 \pm 0.94 \pm 1.03$	4
	Electr.	[350,450]	7	$0.85 \pm 0.70 \pm 0.80$	0
	Щ	>450	0	$0.0 \pm 0.08 \pm 0.08$	0

- Observations consistent with SM predictions
- Precision of prediction not limited by statistics of control sample

Thomas E. Danielson, UCSB

Details of lepton spectrum method


- Complementary to DPhi analysis
 - DPhi: leptonic side of event
 - Search binned in $\Delta \phi(W,I) S_T$
 - LS: hadronic side of event
 - Search binned in HT, MET
- Predict the high MET tail based on high p_T tail of the lepton spectrum in data

 $W \rightarrow I_V$ is a 2-body decay

- Correct for MET vs p_{T,1} resolution using MET templates from multijet sample
- Apply correction factor (κ) to correct for W polarization, biases from lepton selection, other BG contributions

 $\kappa = \frac{N_{true}}{N_{pred}} \quad \begin{array}{l} \mathsf{N}_{true} = \text{true yield in SL sample} \\ \mathsf{N}_{pred} = \text{predicted yield from all events passing} \\ \text{selection} \end{array}$

• Contributions from τ predicted separately

400

300

U

Events/50 GeV

n

100

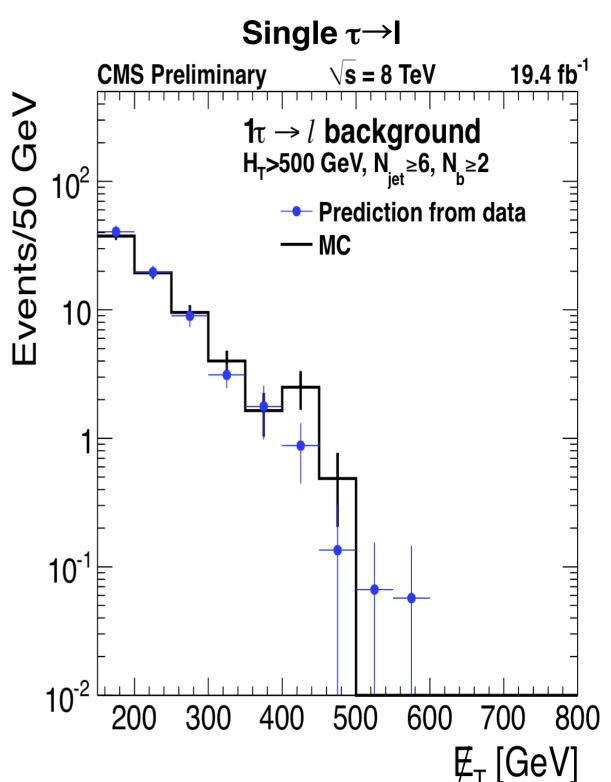
500 600 700 800

Lepton p₋ [GeV]

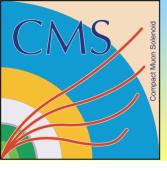
Predicting τ contributions to MET

Three possible contributions from final states with τ 's

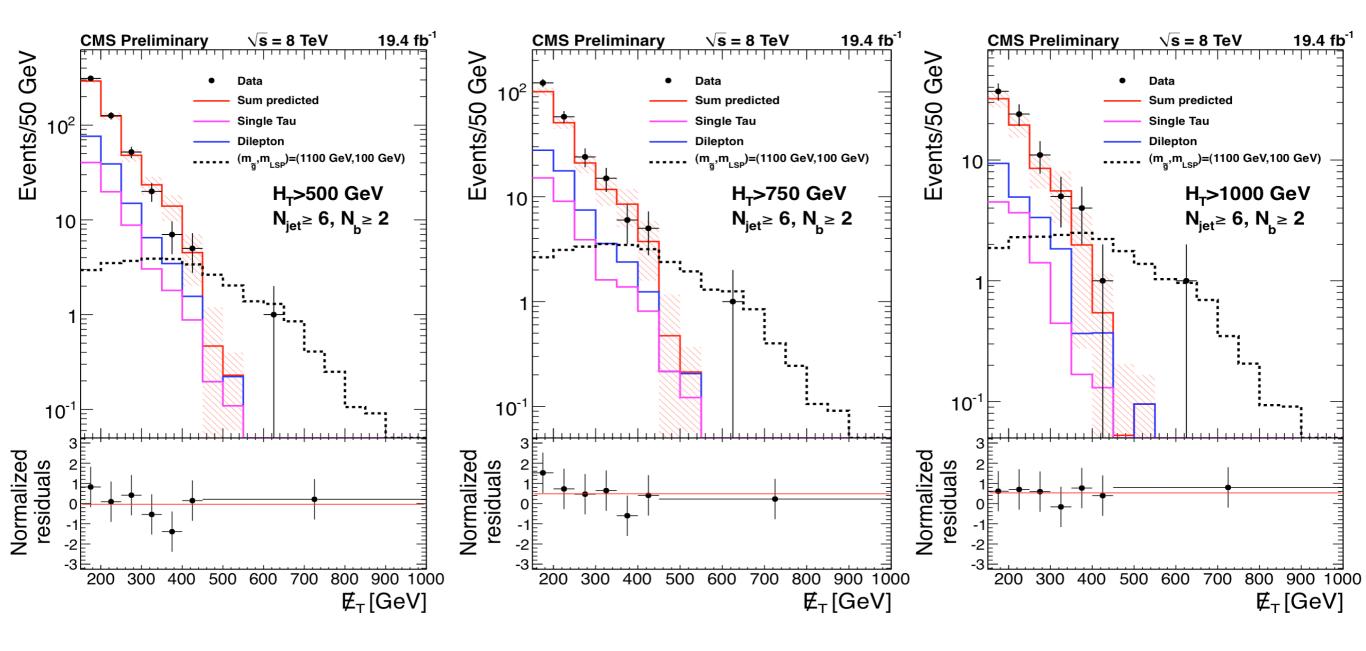
Single $\tau \rightarrow I$, $I + \tau \rightarrow I$, $I + \tau \rightarrow had$

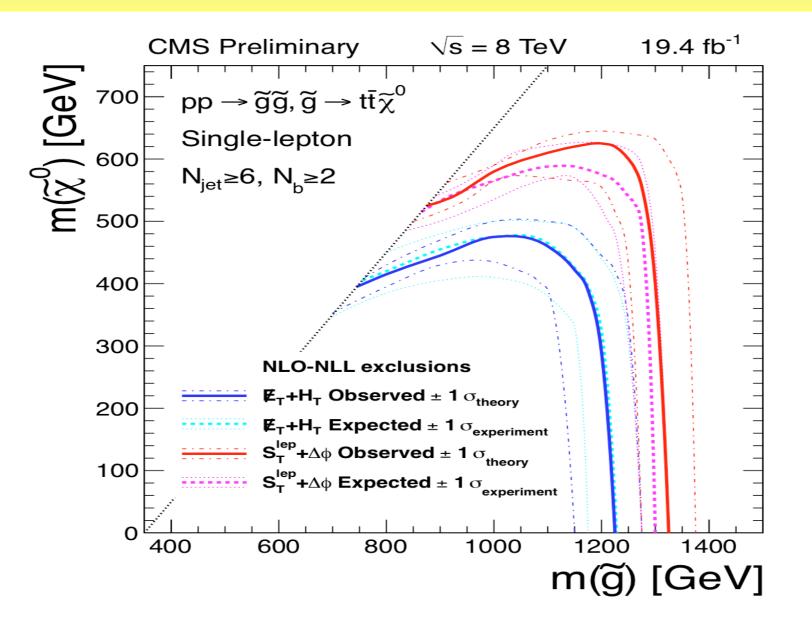

- Generate τ response functions $(p_{T,\mu}/p_{T,\tau})$ from ttbar events with one hadronic, one $W \rightarrow \tau \rightarrow \mu$ decay
- In single μ control sample, sample τ response function

Recalculate event quantites based on modified $\ensuremath{p_{\text{T}}}$


Apply correction factors for BR and acceptance (α), residual differences (κ) to emulated MET

• Apply similar recipe to DL control sample for predicting I + $\tau \rightarrow$ I and I + $\tau \rightarrow$ had contributions


In hadronic case, treat emulated τ as jet and use hadronic response function


Results from lepton spectrum method

- Overall good agreement between data and prediction
- No excess observed in high-MET signal region

U

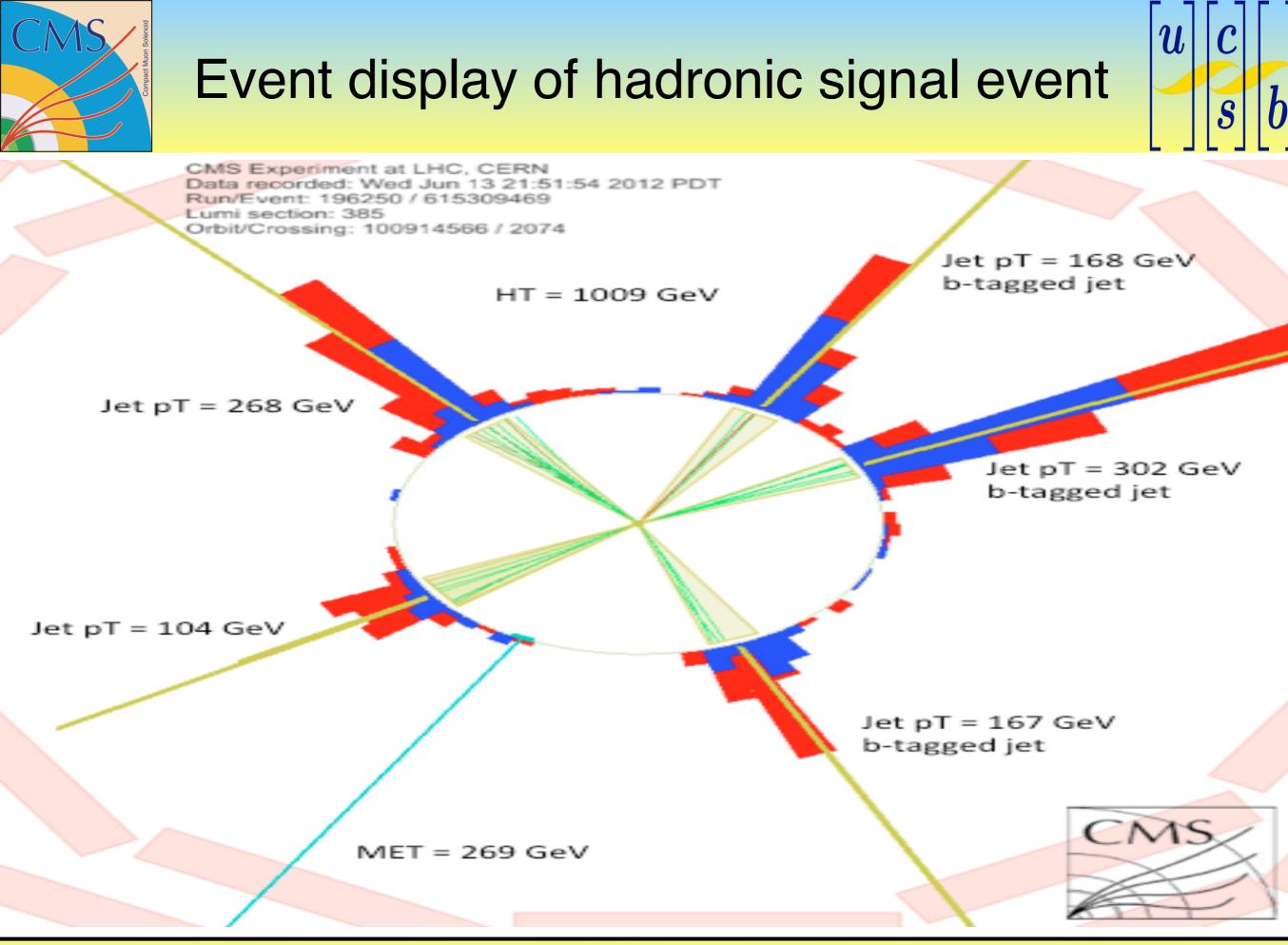
Exclusion limit for single lepton searches



• As with hadronic search, CL_s approach using all bins in signal sample DPhi analysis excludes $\tilde{g} \rightarrow ft \tilde{\chi}_1^0$ models up to to $M_{\tilde{g}} \sim 1325$ GeV LS analysis excludes up to $M_{\tilde{g}} \sim 1225$ GeV

U

Summary


 We have performed searches for gluinomediated SUSY production with 4t and 4b final states using two different event selections

Observed yields consistent with predictions of SM background

• Simplified models with $\tilde{g} \rightarrow ft \tilde{\chi}_1^0$ and $\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ final states both excluded up to $M_{\tilde{g}} \sim 1.2 - 1.3$ TeV

Consistent results using a variety of methods of predicting SM background

Backup Slides for All-Hadronic + btag search

Thomas E. Danielson, UCSB

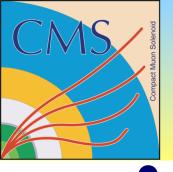
Predicting QCD with $\Delta \dot{\phi}$

 Invert the cut on the angle between MET and leading jets:

$$\Delta \hat{\phi}_j \equiv \Delta \phi(j, E_{\rm T}^{\rm miss}) / \sin^{-1}(\Delta_{Tj} / E_{\rm T}^{\rm miss})$$

whe

here:

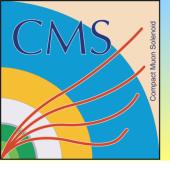

$$\Delta_{Tj} = 0.1 \frac{\sqrt{\sum_{i \neq j} \left[p_x^j p_y^i - p_y^j p_x^i \right]^2}}{p_T^j}$$

- Inverting the cut provides a QCD-rich control sample for predicting this background (LDP)
- Is not highly correlated with MET

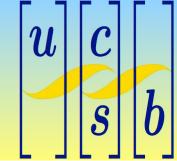
$$F_{rec} = K_{r}^{rec}$$

$$F_{r}^{rec}$$

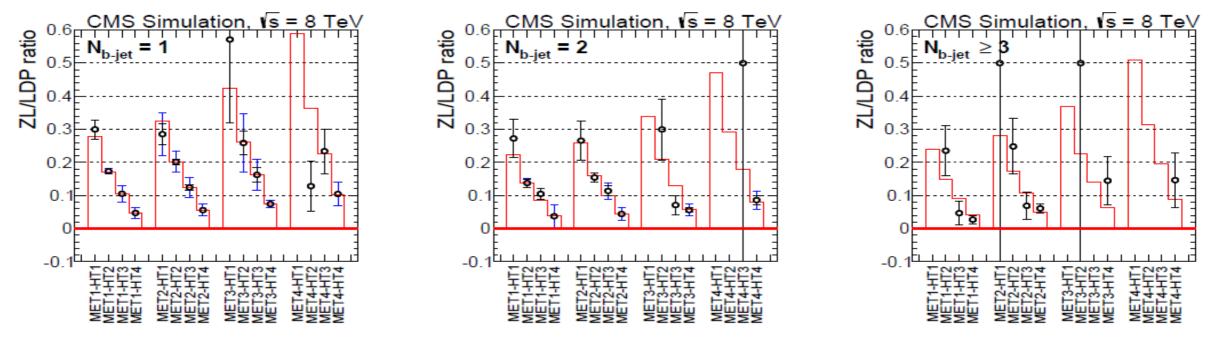
$$F_{r$$

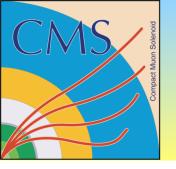


Fitting ZL Contribution from ttWj

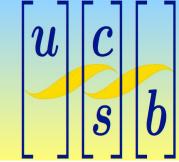


Prediction for each bin of ZL signal sample from corresponding yield in SL sample


Fitting Contribution from QCD

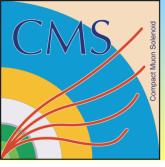

- Invert cut on normalized $\Delta \phi$ (MET,jet_{1,2,3}) to establish low- $\Delta \phi_N$ LDP hadronic sample
- Predict QCD yield from ratio of ZL/LDP
 - Correct HT/MET/Nb dependence with individual K-factors

 $\mu_{ZL;i,j,k}^{QCD} = S_{i,j,k}^{QCD} \cdot \left(K_{met,i}^{QCD} \cdot K_{HT,j}^{QCD} \cdot K_{nb,k}^{QCD} \right) \cdot \mu_{LDP;i,j,k}^{QCD}$


Float KQCD factors to observations from data when statistics allow

Factorized model (red) closes well with MC ratios (black)

Fitting Contribution from $Z \rightarrow vv$

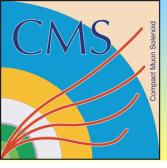


- Predict $Z \rightarrow vv$ yield from events in Z peak for $Z \rightarrow e^+e^-$, $Z \rightarrow \mu^+\mu_-$ events with loosened b-tagging requirements
 - Relate prediction to yields from N_b = 1

$$\mu_{Zll,i,j}^{Zll} = (\mu_{Zvv,i,j}^{Zvv} \cdot S_{ll} \cdot A_{ll,i} \cdot \varepsilon_{ll}) / (F_{Zvv,1} \cdot R_B)$$

- S: Scale factor to account for systemaic uncertainties
- A×ε : Acceptance and efficiecy
- F: Ratio relating looser b-tag to $N_b = 1$
- R_B: Branching ratio fraction $Z \rightarrow_{VV} / Z \rightarrow I^+I^-$
- Scale prediction for $N_b = 1$ by b-tag ratios to predict yields for $N_b = 2$, ≥ 3

$$\mu_{ZL,i,j,k}^{Z\nu\nu} = \mu_{ZL,i,j,k}^{Z\nu\nu} \cdot (F_{Z\nu\nu,k} / F_{Z\nu\nu,1})$$

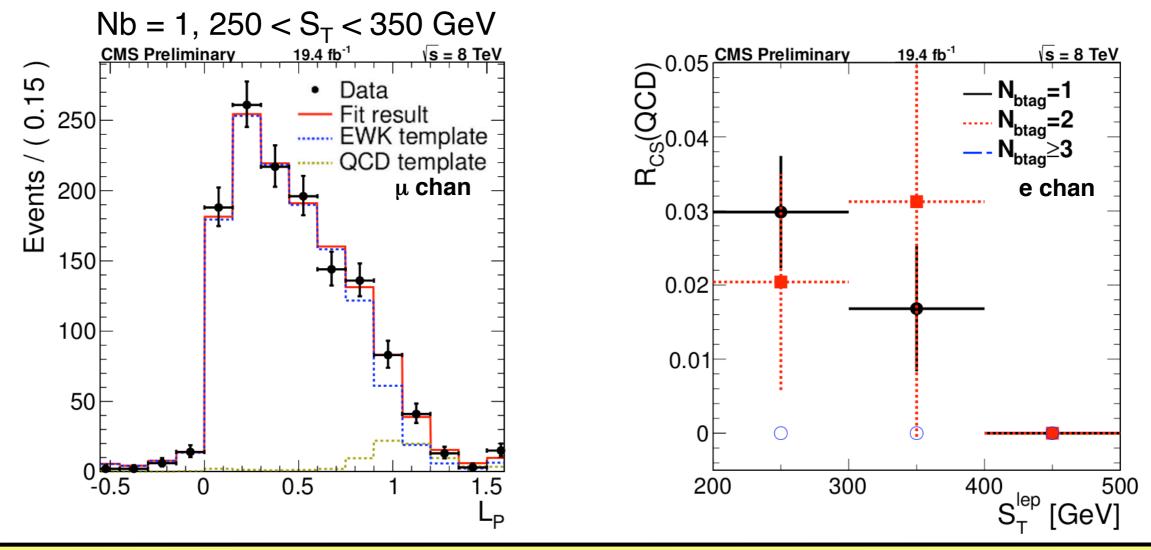

Results from All-Hadronic Analysis

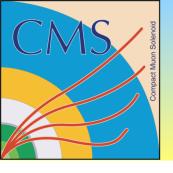
[u	C	
			-
		S	b
L			

	Oł	served num	ber of ever	nts	
$N_{\rm b-jet} \geq 3$	HT1	HT2	HT3	HT4	HT1-4
MET2	161	182	18	14	375
MET3	15	36	6	4	61
MET4		8	2	4	14
MET2-4	176	226	26	22	450
	SM ba	ackground e	stimates fro	om fit	
$N_{ m b-jet} \geq 3$	HT1	HT2	HT3	HT4	HT1-4
MET2	$157 {}^{+13}_{-12}$	179 +13 -12	23.2 +3.8 -3.4	$12.3 \stackrel{+2.7}{_{-2.3}}$	372 ⁺¹⁹ ₋₁₈
MET3	$15.5 \substack{+3.0 \\ -2.6}$	$32.1 \stackrel{+4.3}{_{-3.8}}$	$5.9^{+1.9}_{-1.5}$	$2.9 \stackrel{+1.3}{_{-1.0}}$	56.5 ^{+5.7} _{-5.4}
MET4		$8.4 \stackrel{+2.1}{_{-1.8}}$	2.0 +1.0 -0.7	$2.1 \stackrel{+1.1}{_{-0.9}}$	$12.4 \stackrel{+2.5}{_{-2.2}}$
MET2-4	$173 {}^{+13}_{-12}$	220 ⁺¹⁴ _13	$31.0 \stackrel{+4.3}{_{-3.8}}$	$17.3 \substack{+3.1 \\ -2.8}$	441 ⁺²⁰ ₋₁₉
	SM backgr	ound predic	tions from	simulation	
$N_{\rm b-jet} \geq 3$	HT1	HT2	HT3	HT4	HT1-4
MET2	127 ± 8	180 ± 12	27 ± 2	13 ± 1	347 ± 14
MET3	14.7 ± 0.7	30.9 ± 0.7	7.5 ± 0.4	3.9 ± 0.2	56.9 ± 2.6
MET4		6.1 ± 0.2	2.6 ± 0.2	2.6 ± 0.2	11.3 ± 0.3
MET2-4	141 ± 8	217 ± 12	37 ± 2	20 ± 1	415 ± 15
	SM backgr	ound estima	ates from si	deband fit	
$N_{\rm b-jet} \geq 3$	HT1	HT2	HT3	HT4	HT1-4
MET2	$119 \ ^{+32}_{-19}$	$158 \stackrel{+36}{-24}$	28.2 ^{+6.9} _{-5.7}	$10.2 \stackrel{+3.5}{_{-2.7}}$	$316 \stackrel{+49}{_{-37}}$
MET3	$15.2 \stackrel{+4.3}{_{-3.5}}$	$27.7 \stackrel{+5.8}{-4.9}$	$5.6 \stackrel{+2.6}{_{-1.9}}$	$2.0 \stackrel{+1.5}{_{-0.9}}$	50.5 ^{+8.2} -7.3
MET4		8.3 +2.9 -2.2	$1.9 \ ^{+1.3}_{-0.8}$	$0.4 \stackrel{+0.6}{_{-0.2}}$	$10.5 \stackrel{+3.2}{_{-2.5}}$
MET2-4	$134 {}^{+32}_{-20}$	$194 {}^{+36}_{-26}$	$35.7 \substack{+7.5 \\ -6.3}$	12.6 $^{+3.8}_{-3.0}$	$377 \stackrel{+51}{-42}$

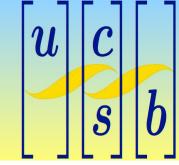
Observations consistent with SM predictions

Backup Slides for Single Lepton + btag search


Predicting QCD for DPhi Method


U

Muon channel: QCD contribution estimated from fit to L_P in control sample


$$L_p = \frac{\vec{p}_{T,l} \cdot \vec{p}_{T,W}}{|\vec{p}_{T,W}|^2}$$

- Electron channel: QCD contribution estimated from R_{CS} in sample with inverted electron selection cuts
- QCD contribution found to be negligible in signal region for both channels

Systematic Uncertainties for LS, DPhi Methods

Systematic uncertainties for DPhi Method: 3 or more b-tags

	$\Delta \kappa / \kappa$ (%)				
	$250 < S_{T}^{lep} < 350 { m GeV}$	$350 < S_T^{lep} < 450 \text{GeV}$	$450\mathrm{GeV} < \mathrm{S}_\mathrm{T}^{\mathrm{lep}}$		
MC sample size	22	44	68		
JES	3	7	6		
$\epsilon_{btag}(c,b)$	<1	<1	1		
$\epsilon_{btag}(light)$	<1	2	2		
W cross-section	2	3	6		
$W+b\overline{b}$ cross-section	2	4	7		
Wt and t cross-section	4	6	11		
Total	23	45	70		

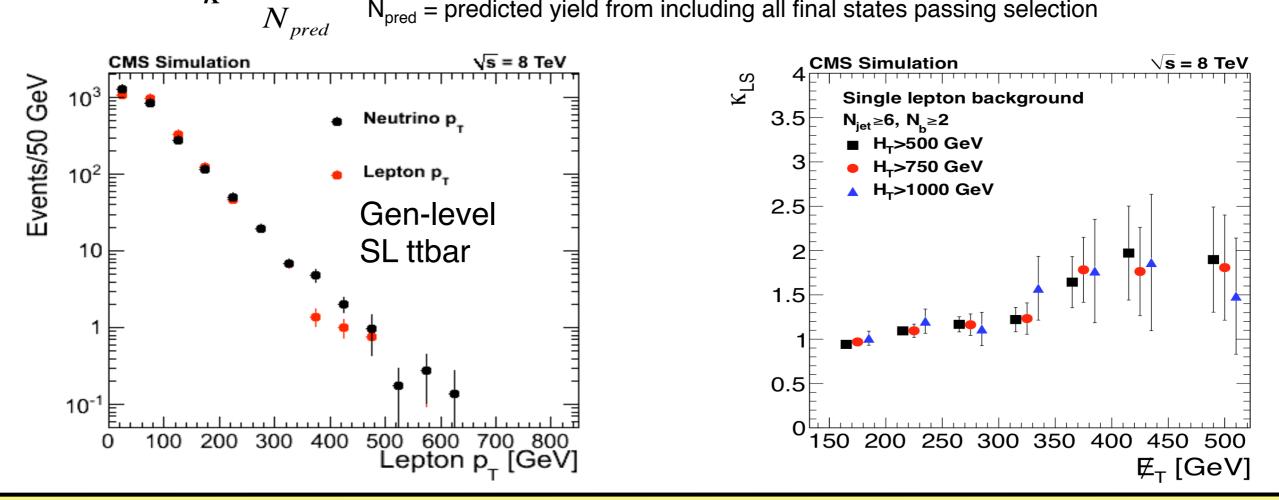
Systematic uncertainties for LS Method

E_T bin:	[150, 250)	[250, 350)	[350, 450)	$\geq 450 \text{ GeV}$
$\not\!\!\!E_T$ and jet energy scale	3.0/2.1/1.1	8.4/8.7/12	9.0/6.5/7.2	28/30/31
W polarization in $t\bar{t}$	3.1/3.4/4.3	4.1/4.1/3.9	5.2/5.8/4.9	5.2/5.4/3.2
W polarization in W+jets	< 0.1/0.1/0.2	0.2/0.1/0.2	0.8/0.7/1.1	1.6/1.7/2.5
$\sigma(t\bar{t})$	0.9/1.3/1.1	0.5/1.1/2.1	0.3/0.1/0.7	1.3/1.0/1.6
$\sigma(W)$	0.4/0.5/0.4	0.2/0.4/0.8	1.1/0.4/1.3	1.2/0.3/1.2
Single top cross section	0.6/1.3/0.3	0.4/1.3/3.2	0.2/0.1/0.4	< 0.1 / < 0.1 / 0.1
Lepton efficiency (μ) vs. p_T	0.5/0.5/0.5	0.5/0.5/0.6	0.5/0.5/0.8	0.2/0.2/0.7
Lepton efficiency (e) vs. p_T	0.2/0.2/0.2	0.2/0.2/0.2	0.2/0.2/0.1	0.3/0.3/0.2
Z+jets background	0.2/0.3/0.4	0.4/0.4/0.1	1.2/1.0/0.9	0.3/0.4/< 0.1
μp_T resolution	<0.1/<0.1/<0.1	0.1/0.4/0.8	1.4/1.3/3.4	2.7/1.5/2.5
Total (excluding scale factors)	4.5/4.5/4.8	9.5/9.8/11	13/9.8/9.6	29/31/31
MC statistics (scale factors)	3.2/4.8/8.0	8.0/10/16	19/21/30	31/33/44
Total	5.5/6.6/9.3	12/14/19	23/23/31	42/45/54

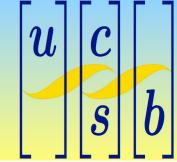
Thomas E. Danielson, UCSB

APS Division of Particles and Fields Meeting, August 15, 2013

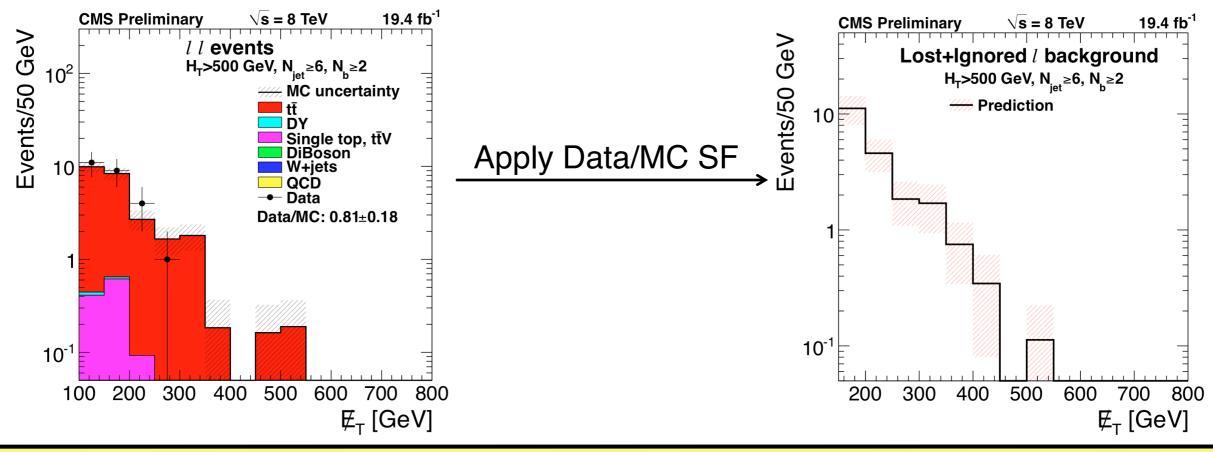
COMPACT Muon Solenoid

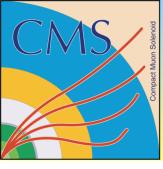

Details of Lepton Spectrum Method

- Correct for MET vs p_{T1} resolution using MET templates from multijet sample
- Apply correction factor (κ) to correct for W polarization, biases from lepton selection, other BG contributions


Contributions from $\boldsymbol{\tau}$ predicted separately

 $\kappa = \frac{N_{true}}{N_{pred}} \quad \begin{array}{l} N_{true} = \text{true yield in SL sample} \\ N_{pred} = \text{predicted yield from including all final states passing selection} \end{array}$

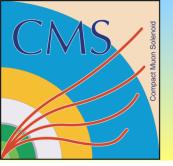



COMPACT Muon Solenaid

Predicting Dilepton Contributions

- Dilepton events in signal region from either lost (recontruction) or ignored (acceptance, isolation) 2nd lepton
 - Obtain scale factor from MC yield data/MC ratio in DL control sample
 - Apply scale factor to MET distribution of DL sample passing selection cuts

Systematic Uncertainties for Tau, Dilepton pieces of LS method



Systematic uncertainty for t prediction: $I1 - \kappa I$ (κ = correction factor for residual differences)

E_T bin	$1\tau \to 1\ell$	$\ell + \tau \to \ell$	$\ell + \tau \rightarrow \text{hadrons}$
[150, 250)	11/16/19	28/34/70	16/20/35
[250, 350)	16/19/29	37/65/131	21/25/35
[350, 450)	39/43/95	73/121/115	43/45/60
$[450,\infty)$	120/99/309	97/95/113	97/95/88

Systematic uncertainties for dilepton prediction

$ \mathbb{E}_T $ bin	[150, 250)	[250, 350)	[350, 450)	$\geq 450~{\rm GeV}$
Pile-up	1.1/1.2/2.7	3.3/5.7/6.8	2.2/3.0/5.9	42.8/41.6/48.0
Top-quark p_T	9.1/4.1/0.4	14/15/15	19/19/24	12/12/15
Lepton efficiency	4.8/4.9/4.7	6.0/5.5/4.1	2.8/2.8/3.5	8.5/7.9/2.0
Trigger efficiency	6.0/6.0/6.0	6.0/6.0/6.0	6.0/6.0/6.0	6.0/6.0/6.0
Data/MC scale factor	22/36/61	22/36/61	22/36/61	22/36/61
Total	25/37/62	28/40/64	30/41/66	51/57/79

Tabulated Results from Lepton Spectrum Method

HT > 500 GeV

$\not \!$	[150, 250)	[250, 350)	[350, 450)	$\geq 450 \text{ GeV}$
1 ℓ	$304.0 \pm 17.4 \pm 16.4$	$49.9 {\pm} 7.7 {\pm} 6.0$	$13.4 {\pm} 4.8 {\pm} 3.1$	$\begin{array}{c} 0.3 \substack{+1.9 + 0.8 \\ -0.3 \substack{-0.3 \\ -0.3 \\ 0.1 \substack{+1.8 \\ -0.1 \atop -0.1 \end{array}} \\ \end{array}$
Dilepton	$54.7 \pm 4.2 \pm 9.0$	$9.6{\pm}1.5{\pm}4.4$	$2.3^{+1.3}_{-0.7}{}^{+1.0}_{-0.6}$	$0.1^{+1.8}_{-0.1}^{+1.8}_{-0.1}$
Single tau	$60.1 \pm 2.1 \pm 5.1$	$11.8 {\pm} 0.9 {\pm} 3.6$	$2.7{\pm}0.5{\pm}1.9$	$0.3 {\pm} 0.1 {\pm} 0.1$
Z+jets (from MC)	$0.5 \pm 0.1 \pm 0.5$	< 0.1	< 0.1	< 0.1
QCD multijet	$1.6\pm3.1\pm3.1$		$0.0\pm1.2\pm1.2$	
Total (predicted):	$419.3 \pm 18.0 \pm 19.4$	$71.3 {\pm} 7.9 {\pm} 8.3$	$18.4^{+5.0+3.8}_{-4.9-3.7}$	$0.7^{+2.6}_{-0.3}^{+2.0}_{-0.3}$
Data (observed), total (μ, e) :	437 (237, 200)	72 (38, 34)	12 (7, 5)	1 (0, 1)
SMS $(m_{\tilde{g}} = 1150 \text{ GeV}, m_{\text{LSP}} = 500 \text{ GeV})$	$5.1 {\pm} 0.2$	$5.6 {\pm} 0.2$	$3.7 {\pm} 0.2$	$3.0{\pm}0.2$
SMS $(m_{\tilde{g}} = 1100 \text{ GeV}, m_{\text{LSP}} = 100 \text{ GeV})$	$6.5 {\pm} 0.3$	$7.6 {\pm} 0.3$	$7.3 {\pm} 0.3$	$9.1 {\pm} 0.3$

HT > 750 GeV

E_T :	[150, 250)	[250, 350)	[350, 450)	$\geq 450 \text{ GeV}$
1 ℓ	$107.3 \pm 10.4 \pm 7.0$	$21.7 \pm 5.1 \pm 3.0$	$8.6{\pm}4.0{\pm}2.1$	$0.3^{+1.8}_{-0.3}^{+0.8}_{-0.3}$
Dilepton	$21.1 \pm 2.5 \pm 3.7$	$5.5 \pm 1.2 \pm 2.1$	$1.4^{+0.7}_{-0.4}$	$\begin{array}{r} 0.3 \substack{+1.8 + 0.8 \\ -0.3 \substack{-0.3 \\ -0.3 \\ 0.0 \substack{+1.8 \\ -0.0 \ -0.0 \end{array}}} \\ 0.0 \substack{+1.8 \\ -0.0 \substack{-0.0 \\ -0.0 \end{array}}$
Single tau	$24.2 \pm 1.4 \pm 3.6$	$5.5 {\pm} 0.6 {\pm} 1.0$	$2.2{\pm}0.4{\pm}0.6$	$0.3{\pm}0.1{\pm}0.1$
Z+jets (from MC)	$0.2{\pm}0.1{\pm}0.2$	< 0.1	< 0.1	< 0.1
QCD multijet	< 1	< 0.1	< 0.1	< 0.1
Total (predicted):	$152.7 \pm 10.7 \pm 8.7$	$32.7 {\pm} 5.3 {\pm} 3.9$	$12.3 \pm 4.0^{+2.3}_{-2.2}$	$0.7^{+2.5+1.9}_{-0.3-0.3}$
Data (observed), total (μ, e) :	180 (94, 86)	39 (19, 20)	11 (7, 4)	1 (0, 1)
SMS $(m_{\tilde{g}} = 1150 \text{ GeV}, m_{\text{LSP}} = 500 \text{ GeV})$	$3.3 {\pm} 0.2$	$3.7{\pm}0.2$	$2.6 {\pm} 0.1$	$2.7{\pm}0.2$
SMS $(m_{\tilde{g}} = 1100 \text{ GeV}, m_{\text{LSP}} = 100 \text{ GeV})$	$5.8 {\pm} 0.3$	$6.9 {\pm} 0.3$	$6.6 {\pm} 0.3$	$8.6 {\pm} 0.3$

HT > 1000 GeV

E_T :	[150, 250)	[250, 350)	[350, 450)	$\geq 450 \text{ GeV}$
1 ℓ	$38.2{\pm}6.5{\pm}3.6$	$9.0{\pm}3.5{\pm}1.7$	$1.8{\pm}1.8{\pm}0.6$	$0.0^{+1.5}_{-0.0}$
Dilepton	$6.1 \pm 1.5 \pm 1.8$	$3.3^{+1.0}_{-0.9} \pm 1.3$	$0.4^{+1.3}_{-0.4}{}^{+1.3}_{-0.3}$	$\begin{array}{c} 0.0 \substack{+1.5 + 0.8 \\ -0.0 \substack{-0.0 \\ -0.0 \end{array}} \\ 0.0 \substack{+1.8 + 2.0 \\ -0.0 \substack{-0.0 \end{array}} \end{array}$
Single tau	$8.2 \pm 0.8 \pm 1.1$	$1.9 \pm 0.4 \pm 0.4$	$0.3{\pm}0.1{\pm}0.3$	< 0.1
Z+jets (from MC)	< 0.1	< 0.1	< 0.1	< 0.1
QCD multijet	< 0.1	< 0.1	< 0.1	< 0.1
Total (predicted):	$52.5 {\pm} 6.7 {\pm} 4.2$	$14.2 {\pm} 3.6 {\pm} 2.2$	$2.5^{+2.2+1.5}_{-1.8-0.7}$	$0.2^{+2.3}_{-0.2}{}^{+2.2}_{-0.0}$
Data (observed), total (μ, e) :	61 (29, 32)	16 (7, 9)	5 (3, 2)	1 (0, 1)
SMS $(m_{\tilde{g}} = 1150 \text{ GeV}, m_{\text{LSP}} = 500 \text{ GeV})$	$1.2{\pm}0.1$	$1.3{\pm}0.1$	$1.1{\pm}0.1$	$1.5 {\pm} 0.1$
SMS $(m_{\tilde{g}} = 1100 \text{ GeV}, m_{\text{LSP}} = 100 \text{ GeV})$	4.2 ± 0.2	4.7 ± 0.2	$4.7 {\pm} 0.2$	$6.6 {\pm} 0.3$

Thomas E. Danielson, UCSB

APS Division of Particles and Fields Meeting, August 15, 2013