OBSERVATION OF D⁰ MIXING AT CDF

Pat Lukens Fermilab

Flavor mixing in the charm sector

- Neutral mesons can oscillate between matter and anti-matter
 - Mass eigenstates ≠ flavor eigenstates

$$\left| \boldsymbol{D}^{\boldsymbol{\theta}} \right\rangle = \left(\left| \boldsymbol{D}_{1} \right\rangle + \left| \boldsymbol{D}_{2} \right\rangle \right) / \sqrt{2} \qquad \left| \overline{\boldsymbol{D}}^{\boldsymbol{\theta}} \right\rangle = \left(\left| \boldsymbol{D}_{1} \right\rangle - \left| \boldsymbol{D}_{2} \right\rangle \right) / \sqrt{2}$$

Time evolution

$$\left| \boldsymbol{D}_{1,2}(t) \right\rangle = \left| \boldsymbol{D}_{1,2}(0) \right\rangle e^{-t(\boldsymbol{\Gamma}_{1,2} + i\boldsymbol{M}_{1,2})}$$

$$x = \frac{m_1 - m_2}{\Gamma_D} = 2\frac{m_1 - m_2}{\Gamma_1 + \Gamma_2} \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma_D} = \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2}$$

- Mixing well established in K⁰ (1962), B⁰ (1987), and B_s⁰ (CDF 2006) decays
 - Evidence for D⁰ from Belle (2006), Babar and CDF(2007)
 - Observation by LHCb (2012)

Mixing Characteristics

Two sources

- Short-range box diagram
 - Suppressed in SM
 - GIM suppression in absence of heavy top quark as in B and K
 - Possible enhancement by New Physics
- Long-range intermediate states
 - Expected to dominate in SM
 - Large theoretical uncertainties
- Charm mixing slow
 x,y ≪1

Mixing Signature

- Compare rate of wrong-sign $D^0 \rightarrow K^+\pi^$ decays to right-sign $D^0 \rightarrow K^-\pi^+$ decays
 - Tag flavor at production with $D^{*+} \rightarrow D^0 \pi^+$ decays
 - Wrong sign events can come from mixing or doubly Cabibbo-suppressed (DCS) decays
 - No oscillation in DCS decays

Charm Meson Mixing at CDF

Data Sample

- Full CDF II data set
 - 9.6 fb⁻¹ pp at √s=1960 GeV
- Heavy flavor hadronic decay trigger
 - Two opposite-charge tracks with p_T>2 GeV/c, d₀>100µm

Reconstruction Method

 Reconstruct events with both RS and WS hypotheses

Large background to WS decays from incorrect charge assignment in RS decays

DPF 2013

Charm Meson Mixing at CDF

6

Reduce misassignment background

- Remove WS candidates consistent with RS hypothesis and vice versa
 - Removes 96% of background
 - 78% efficient for signal

300

200

100

0 1.8

1.85

Charm Meson Mixing at CDF

1.9

50

1.8

1.85

DPF 2013

1.9

D* Reconstruction

Standard method

- Fit $\Delta m = m(K\pi\pi_{tag}) m(K\pi) m_{\pi}$
- Must account for D⁰ and D* backgrounds
 - Cutting on D⁰ peak would include fake D mesons in D* fit
 - In 10 bins of D⁰ decay time, for RS and WS candidates, find the D⁰ yield in 60 bins of Δm

Fit the resulting Δm distribution to get the D* yields

Wrong-Sign Ratio

From D* yields, get measured ratio in each time bin

$$R_{i} = \frac{N_{i}(D^{*+} \to [K^{+}\pi^{-}]\pi^{+}) + N_{i}(D^{*-} \to [K^{-}\pi^{+}]\pi^{-})}{N_{i}(D^{*+} \to [K^{-}\pi^{+}]\pi^{+}) + N_{i}(D^{*-} \to [K^{+}\pi^{-}]\pi^{-})}$$

DPF 2013

B Contamination

- Must account for B decay component
 - D⁰ will have larger apparent lifetime
 - Mixing sample is required to be consistent with prompt production, but some B contamination remains

$$R_{m}(t) = \frac{N^{WS}(t) + N_{B}^{WS}(t)}{N^{RS}(t) + N_{B}^{RS}(t)}$$

B Fraction Measurement

B Fraction

Measured in RS data
 Fit to 4th order polynomial

Mixing Fit

χ^2 fit vs. decay time

Correct for B component using MC for D decay time distribution as a function of apparent decay time

$$\chi^2 = \sum_{i=1}^{20} \left[\frac{r_i - R_m(t_i)}{\sigma_i} \right]$$

20 measured WS/RS points r_i with error σ_i Gaussian constraint on f_B parameters (p)

 $\int_{-\infty}^{2} + C_{f_B}(\mathbf{p}) + C_{R_B}(\mathbf{h})$ Gaussian cor **Gaussian constraint on MC** decay time distributions of D* from B

$$R_{m}(t) = \frac{N^{WS}(t) + N_{B}^{WS}(t)}{N^{RS}(t) + N_{B}^{RS}(t)} = R(t) \left[1 + f_{B}^{RS}(t) \left(\frac{R_{B}(t)}{R(t)} - 1 \right) \right]$$

$$f_{B}^{RS}(t) = \frac{N_{B}^{RS}(t)}{N^{RS}(t) + N_{B}^{RS}(t)}$$

Fraction of RS D* from B decays

 $R_B(t) = \frac{N_B^{WS}(t)}{N_B^{RS}(t)}$

WS/RS ratio of non-prompt D⁰ Calculated by weighting R(t) with the decay-time distribution of secondary D⁰ from MC

Systematic Uncertainties

- The quoted uncertainties include the errors returned by the mass fits and uncertainties on the fractions f_B and the simulation time distributions.
- Investigated possible effects that could bias the result
 - Variation of D⁰ signal shape
 - D* signal shape
 - Partially reconstructed charm background in Kπ fits
 - D* background shape
 - Impact parameter non-prompt shape
 - Simulation time scale
 - Detector track reconstruction asymmetries
- Systematic uncertainties were found to be small relative to the statistical errors from data
 - For many, there is a common effect on the WS D* and RS D* fits, and the effect cancels in the WS/RS ratio

Fit type	χ^2/ndf	Parameter	Fitted values	Correlation coefficient		
			$\times 10^{-3}$	R_D	y'	$x^{\prime 2}$
Mixing	16.91/17	R_D	3.51 ± 0.35	1	-0.967	0.900
		y'	4.3 ± 4.3		1	-0.975
		$x^{\prime 2}$	0.08 ± 0.18			1
No-mixing	58.75/19	R_B	4.30 ± 0.06			

DPF 2013

Signficance

- Beyesian probability contour
 - No mixing hypothesis excluded at 6.1σ
- Frequentist method using toy-MC in samples without mixing
 - χ² difference between mixing and no-mixing hypothesis exceeds observed in 6 of 10¹⁰ trials
 - No-mixing hypothesis excluded at 6.1σ

Summary

 CDF confirms observation of D⁰ mixing at 6.1σ

> Parameters similar to other experiments

