Searching for New Physics with Multilepton Events with the ATLAS Detector at the LHC

> Mike Hance Lawrence Berkeley Labs August 15, 2013

A model-independent search for anomalous production of multilepton events.

Outline of this talk

- Why multileptons?
- event and object selection
 - Categorization of events
- Sackground estimation and systematic uncertainties
- Results and limits
 - Presented in a model-independent format
- Model testing

Results documented in <u>ATLAS-CONF-2013-070</u>

Leptons in BSM Searches

Prompt leptons are convenient probes of SM and BSM physics:

- Rare at hadron colliders
- Emerge (almost) unperturbed from the hard scatter
- "Easy" to trigger, reconstruct, identify

Events with 3+ leptons present in many new physics scenarios:

Search Strategy

Define 4 mutually exclusive signal channels, based on:

- Does the event have $\geq 3e/\mu$, or $2e/\mu$ and $\geq 1\tau$?
- e^+e^- or $\mu^+\mu^-$ pair (possibly with a third lepton) with |m m(Z)| < 20 GeV?

Reject events with $\ell^+\ell^-$ pairs with $m(\ell^+\ell^-) < 15$ GeV (avoid low-mass resonances)

After categorization, inspect kinematic quantities of interest in each channel. Limits placed on individual channels with lower bounds on these variables:

Variable	Meaning						
H _T	$\Sigma p_{\rm T}$ of all jets in the event						
$m_{\rm T}^W$	Transverse mass of W-boson candidate (on-Z events only)						
Variable	Meaning Lower Bounds [GeV]]	Additional Requirements		
$H_{\rm T}^{\rm leptons}$	$\Sigma p_{\rm T}$ of leading three leptons	0	200	500	800		
Min. $p_{\rm T}^{\ell}$	$p_{\rm T}$ of softest (third) lepton	0	50	100	150		
$E_{\rm T}^{\rm miss}$	MET_RefFinal	0	100	200	300	$H_{\rm T} < 150 {\rm GeV}$	
$E_{\rm T}^{\rm miss}$		0	100	200	300	$H_{\rm T} \ge 150 { m ~GeV}$	
m _{eff}		0	600	1000	1500		
$m_{\rm eff}$	$E_{\rm T}^{\rm miss}$ + $H_{\rm T}$ + $H_{\rm T}^{\rm leptons}$	0	600	1200		$E_{\rm T}^{\rm miss} \ge 100 { m GeV}$	
m _{eff}		0	600	1200		$m_{\rm T}^{\rm W} \ge 100 { m GeV}, { m on-}Z$	
Variable	Meaning Lower Bounds						
<i>b</i> -tags	Number of <i>b</i> -tagged jets	0	1	2			

Object and Event Selection

Lepton selection:

- $p_{\rm T} > 26~{\rm GeV}$ for triggered $e/\mu, > 15~{\rm GeV}$ for subleading $e/\mu, > 20~{\rm GeV}$ for au
- Multivariate ID (e/τ)
- Impact parameter requirements (e/μ)
 - Reduces contributions from heavy-flavor decays, pileup
- Isolation requirements (e/μ)
 - Reduces non-prompt and fake leptons

Event selection:

- Single lepton triggers used:
 - At least one e or μ with $p_T > 26$ GeV must match to a trigger
- Require 3 leptons, at least 2 e or μ

Other objects:

- Jets: $p_{\rm T} > 30$ GeV, $|\eta| < 4.5$
- b-tags: multivariate ID @ 70% efficiency working point

Background estimation split into two pieces:

- "Irreducible" backgrounds: events with 3 prompt leptons. Modeled with MC.
 - WZ/ZZ: SHERPA diboson samples with up to 3 jets
 - Includes γ^* contributions down to lepton mass thresholds (or 100 MeV for $\gamma^* \to ee)$
 - Also includes singly-resonant $Z \rightarrow 4\ell$ diagrams
 - Normalization and shapes cross-checked with POWHEG
 - $t\bar{t} + W/Z, t\bar{t} + WW$: MADGRAPH
 - $Z\gamma \; (\gamma \rightarrow e)$: Alpgen
 - Triboson: MADGRAPH, negligible contributions
 - Higgs: various generators, negligible contributions.
- General Water (Construction) (Con
 - Includes Z+jets, W+jets, $t\bar{t}$, single-top, multijets, etc.
 - Estimated with *fake-factor* method
 - Data-driven technique
 - Minimal dependence on MC

Three validation regions:

- **OS Dilepton**: validate $e/\mu/\tau$ object selection, efficiencies, fakes (for τ)
- SS Dilepton: validate prompt and non-prompt background estimates
- Intermediate-ID Trilepton: validate reducible background estimates

Systematic Uncertainties

Systematics on irreducible background estimates:

- Cross-section uncertainties:
 - WZ: larger of 10% or $1.5 \times H_T/\text{TeV}$
 - ZZ: 25%
 - $t\bar{t} + W/Z$: 30%
- The uncertainties on WZ and ZZ are from comparisons of SHERPA (default) with POWHEG.

Systematics on fake-factor estimates:

- Electrons: $\approx 30\%$ uncertainties on fake-factors
 - mostly event selection and LF/HF differences
- Muons: rising from $\approx 30\%$ at low $p_{\rm T}$ to $\approx 40\%$ at 70+ GeV
 - driven mostly by jet activity, heavy-flavor fractions
- Taus: 25% uncertainty
 - primarily from varying selection criteria for W+jet events

Yields

Yields

Limits

95% CL upper limits "visible cross section":

$$\sigma_{95}^{\rm vis} = \frac{N_{95}}{\int \mathcal{L}dt}$$

Note: no acceptance or efficiency taken into account...

So, what now?

How can someone use these results?

$$rac{N_{95}}{\int \mathcal{L} \mathrm{d} t} = \sigma_{95}^{\mathrm{fid}} \geq \sigma_{\mathrm{NP}}^{\mathrm{total}} imes \mathcal{A} imes \epsilon$$

- $\sigma_{\rm NP}^{\rm total}$: Total cross section of New Physics process
- A: Acceptance fraction of events we *can* see (reject events)
- ϵ : Efficiency of events we *can* see, fraction of events we *should* see (weight events)

Getting around model dependence

Efficiencies should also be model-independent!

- Fiducial volume at particle level: A
 - $p_{\rm T}$, $|\eta|$ requirements
 - Isolation requirements using stable particles
 - No special treatment for pileup!
- Measure ϵ in MC (WZ)

$ \eta $	Prompt e	$\tau \rightarrow e$	$\tau_{ m h}$
0.0-0.1	0.675 ± 0.003	0.52 ± 0.01	0.210 ± 0.009
0.1-0.5	0.757 ± 0.001	0.595 ± 0.005	0.195 ± 0.004
0.5-1.0	0.747 ± 0.001	0.581 ± 0.005	0.179 ± 0.004
1.0-1.5	0.666 ± 0.002	0.494 ± 0.006	0.138 ± 0.004
1.5-2.0	0.607 ± 0.002	0.465 ± 0.006	0.170 ± 0.004
2.0-2.5	0.591 ± 0.002	0.475 ± 0.007	0.163 ± 0.005

 ϵ^{fid} $=\epsilon_{\ell 1}\epsilon_{\ell 2}\epsilon_{\ell 3}\pm(10\% \text{ for } 3e/\mu, 20\% \text{ for } 2e/\mu+\tau)$

Model independent search for anomalous production of multilepton events

- Results broadly consistent with expectation from SM
- Upper limits on contributions from new physics vs many kinematic variables
 - Lepton kinematics
 - $E_{\mathrm{T}}^{\mathrm{miss}}$
 - Jet (and *b*-jet) activity
- Efficiencies provided for model testing
 - Results designed to be (re)interpreted by everyone

Thanks for listening!