Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

Search for $t\bar{t}$ resonances in semileptonic final states in pp collisions at $\sqrt{s}= 8$ TeV

Paul Turner on behalf of the CMS Collaboration

University of Illinois at Chicago

pturne7@uic.edu

DPF 2013 Meeting at UC Santa Cruz

August 15, 2013

Outline

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

1) Introduction

CMS Detector

3 Event Selection

 $M_{t\bar{t}}$ Reconstruction

5 Monte Carlo Samples

6 Results

Statistical Analysis

8 Limits

9 Conclusions

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Recorstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

- Several extensions to the standard model (SM) predict gauge interactions with enhanced couplings to the top quark.
- Massive new particles can manifest resonances in the production of pairs at the Large Hadron collide
- Each result is a distorted in more mass spectrum w.r.t. the SM expectation of the allows for a model independent search for beined standard model (BSM) physics by looking at the tt invariant mass.

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Recorstruction

Monte Carl Samples

Results

Statistical Analysis

Limits

Conclusions

- Several extensions to the standard model (SM) predict gauge interactions with enhanced couplings to the top quark.
- Massive new particles can manifest as resonances in the production of $t\bar{t}$ pairs at the Large Hadron Collider (LHC)
- Each result if a distorted of human at mass spectrum w.r.t. the SM expectation of his allows for a model independent search for be hid standard model (BSM) physics by looking at the tt invariant mass

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Recorstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

- Several extensions to the standard model (SM) predict gauge interactions with enhanced couplings to the top quark.
- Massive new particles can manifest as resonances in the production of $t\bar{t}$ pairs at the Large Hadron Collider (LHC)
- Each result in a distorted $t\bar{t}$ invariant mass spectrum w.r.t. the SM expectation. This allows for a model independent search for beyond standard model (BSM) physics by looking at the $t\bar{t}$ invariant mass!

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

• Specific BSM models:

- Colorons, axigluons, gravitons in Rand drum model extensions, and the second drum model extensions and the second drum model in the second drum model drum
- Leptophobic Topcolor Z/A/Harrise
- Kaluza-Klein (KK) excitation autors Agashe et. al.
- We present a model into the production of heavy resonances the production of heavy resonances the product of the product of
- We place limits on specific models (farris et. al., Agashe et. al.) that predict neavy thresonances.

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

• Specific BSM models:

- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, m
- Leptophobic Topcolor Z/ A Harrisee
- Kaluza-Klein KK excitation autons Agashe et. al.
- We present a model in the production of heavy resonances the production of heavy resonances the product of th
- We place lime on specific models (farris et. al., Agashe et. al.) that predict neavy thresonances.

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

- Specific BSM models:
 - Colorons, axigluons, gravitons in Randall-Sundrum model extensions, m.
 - Leptophobic Topcolor Z' Harris et. al.
 - Kaluza-Klein (KK) excitation of gluons Agashe et. al.
- We present a model in a cent search for the production of heavy resonances the product of the production in 2012 by the compact Muon selencid (CMS) detector in pp collision of 5=8 TeV at the LHC.
- We place lime on specific models (farris et. al., Agashe et. al.) that predict neavy thresonances.

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

- Specific BSM models:
 - Colorons, axigluons, gravitons in Randall-Sundrum model extensions, m
 - Leptophobic Topcolor Z' Harris et. al.
 - Kaluza-Klein (KK) excitations of gluons Agashe et. al.
- We present a model in the production of heavy resonances the production of heavy resonances the product of the pr
- We place lime on specific models (farris et. al., Agashe et. al.) that predict neavy thresonances.

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

• Specific BSM models:

- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, m
- Leptophobic Topcolor Z' Harris et. al.
- Kaluza-Klein (KK) excitations of gluons Agashe et. al.
- We present a model-independent search for the production of heavy resonances decaying into $t\bar{t}$ using data recorded in 2012 by the Compact Muon Solenoid (CMS) detector in pp collisions at \sqrt{s} =8TeV at the LHC.
- We place limits on specific models (farris et. al., Agashe et. al.) that predict neavy thresonances.

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

• Specific BSM models:

- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, m
- Leptophobic Topcolor Z' Harris et. al.
- Kaluza-Klein (KK) excitations of gluons Agashe et. al.
- We present a model-independent search for the production of heavy resonances decaying into $t\bar{t}$ using data recorded in 2012 by the Compact Muon Solenoid (CMS) detector in pp collisions at \sqrt{s} =8TeV at the LHC.
- We place limits on specific models (Harris et. al., Agashe et. al.) that predict heavy *tt* resonances.

CMS Detector

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Recor struction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

- Superconducting solenoid, 6m internal diameter, 3.8T
- Silicon Pixel and Strip Tracker
- Lead Tungstate Crystal Electromagnetic Calorimeter (ECAL)
- Brass/Scintillator hadron calorimeter (HCAL)
- Gas-ionization muon chambers are embedded in the steel return yoke of the solenoid
- Forward calorimetery complements the barrel and endcap detectors

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Event

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

Data consists of 19.6 fb^{-1} integrated luminosity of pp collisions at $\sqrt{s} = 8$ TeV collected by the CMS experiment in 2012.

ightarrow Heavy resonance means boosted topology

Electron Channel Trigger

-Electron w/ $p_T > 30$ GeV -Jet w/ $p_T > 100$ GeV -Jet w/ $p_T > 25$ GeV

Muon Channel Trigger Muon w $/p_T > 40$ GeV

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Event

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

Data consists of 19.6 fb^{-1} integrated luminosity of pp collisions at $\sqrt{s} = 8$ TeV collected by the CMS experiment in 2012.

 $\frac{1}{\sqrt{1-r}} \rightarrow \text{Heavy resona}$

 \rightarrow Heavy resonance means boosted topology!

Electron Channel Trigger

-Electron w/ $p_T > 30$ GeV -Jet w/ $p_T > 100$ GeV -Jet w/ $p_T > 25$ GeV

Muon Channel Trigger Muon w $/p_T > 40$ GeV

14 / 56

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

Data consists of 19.6 fb^{-1} integrated luminosity of pp collisions at $\sqrt{s} = 8$ TeV collected by the CMS experiment in 2012.

Non-Resolved Event p t t t t t t t t t t t t t t

 \rightarrow Heavy resonance means boosted topology!

Electron Channel Trigger

-Electron w/ p_T > 30GeV

-Jet w/ $p_T > 100 \text{GeV}$

-Jet w/ $p_T > 25$ GeV

Muon Channel Trigger Muon w/ p_T > 40GeV

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

Data consists of 19.6 fb^{-1} integrated luminosity of pp collisions at $\sqrt{s} = 8$ TeV collected by the CMS experiment in 2012.

 \rightarrow Heavy resonance means boosted topology!

Electron Channel Trigger

-Electron w/ p_T > 30GeV

-Jet w/ $p_T > 100 \text{GeV}$

-Jet w/ $p_T > 25$ GeV

Muon Channel Trigger

-Muon w/ p_T > 40GeV

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

- One electron(muon) w/ p_T >35 GeV(45 GeV), $|\eta|$ < 2.5 (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets $|\eta| <$ 2.4
 - Leading jet $p_T > 150$ GeV, other jets $p_T > 50$ GeV

•
$$H_T^{lep} = E_T^{miss} + p_T^{lep} > 150$$
 GeV (Scalar)

• $E_T^{miss} > 50 \text{ GeV}$

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Recorstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

- One electron(muon) w/ p_T >35 GeV(45 GeV), $|\eta|$ < 2.5 (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets $|\eta| < 2.4$
 - Leading jet $p_{T} > 150$ GeV, other jets $p_{T} > 50$ GeV

•
$$H_T^{lep} = E_T^{miss} + p_T^{lep} > 150$$
 GeV (Scalar)

• $E_T^{miss} > 50 \text{ GeV}$

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Recor struction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

- One electron(muon) w/ p_T >35 GeV(45 GeV), $|\eta|$ < 2.5 (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets $|\eta| < 2.4$
 - Leading jet $p_T > 150$ GeV, other jets $p_T > 50$ GeV

 $H_T^{lep} = E_T^{miss} + p_T^{lep} > 150 \,\, {
m GeV} \,\, ({
m Scalar})$

 $\circ E_T^{miss} > 50 \text{ GeV}$

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Recorstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

- One electron(muon) w/ p_T >35 GeV(45 GeV), $|\eta|$ < 2.5 (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets $|\eta| < 2.4$

Leading jet $p_T > 150$ GeV, other jets $p_T > 50$ GeV

•
$$H_T^{lep} = E_T^{miss} + p_T^{lep} > 150$$
 GeV (Scalar)

 $> E_T^{miss} > 50 {
m ~GeV}$

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Recor struction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

- \circ One electron(muon) w/p_T >35 GeV(45 GeV), $|\eta| < 2.5$ (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets $|\eta| < 2.4$

- Leading jet $p_T > 150$ GeV, other jets $p_T > 50$ GeV

•
$$H_T^{lep} = E_T^{miss} + p_T^{lep} > 150$$
 GeV (Scalar)

 $\circ E_T^{miss} > 50 \text{ GeV}$

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

• 2D Cut : $\Delta R(lep, closestjet) > 0.5$ or

 $p_{T,rel}(lep, closestjet) > 25 GeV$

Conclusions

Backup Slides

 \rightarrow Do not cut hard on lepton isolation!

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carl Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

• Triangular (topological) cut (removes events when E_T^{miss} opposite to electron or jet)

 $-\frac{1.5}{75GeV}E_T^{miss} + 1.5 < \Delta\Phi\{$ (e or j), E_T^{miss} $\} < \frac{1.5}{75GeV}E_T^{miss} + 1.5$

Number of jets distribution in the electron (muon) channel of the high-mass analysis.

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Recorstruction

Monte Carl Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

Distance ΔR between the electron(muon) and the closest jet.

2D Cut : ΔR (lepton, closest jet) > 0.5 or $p_{T,rel}$ (lepton, closest jet) > 25 GeV

Event Candidate

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

• Each candidate has a list of jets, lepton, and E_T^{miss} (neutrino)

- thad reconstructed with at least one jet
- t_{lep} reconstructed with at least one jet, E_T^{miss} , and one lepton
- Permute jet assignments to generate hypotheses

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

- Each candidate has a list of jets, lepton, and E_{τ}^{miss} (neutrino)
- thad reconstructed with at least one jet
- t_{lep} reconstructed with at least one jet, E_T^{miss} , and one lepton
- Permute jet assignments to generate hypotheses

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

- Each candidate has a list of jets, lepton, and E_{τ}^{miss} (neutrino)
- t_{had} reconstructed with at least one jet
- t_{lep} reconstructed with at least one jet, E_T^{miss} , and one lepton
- Permute jet assignments to generate hypotheses

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

- Each candidate has a list of jets, lepton, and E_{τ}^{miss} (neutrino)
- t_{had} reconstructed with at least one jet
- t_{lep} reconstructed with at least one jet, E_T^{miss} , and one lepton
- Permute jet assignments to generate hypotheses

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carl Samples

Results

Statistica Analysis

Limits

Conclusion

Backup Slides

Select hypothesis with minimal χ^2 , Cut on $\chi^2 < 10$ $\chi^2 = \chi^2_{len} + \chi^2_{had}$

Top Jet Candidate

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

 \rightarrow Increase the acceptance for our signal by allowing events with low jet multiplicity and non-isolated leptons. This causes the number of qcd events to dominate.

 \rightarrow Introduce two alternative cuts: 2D and triangular. This controls QCD.

 $\rightarrow \chi^2$ cut controls W+jets

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

 \rightarrow Increase the acceptance for our signal by allowing events with low jet multiplicity and non-isolated leptons. This causes the number of qcd events to dominate.

 \rightarrow Introduce two alternative cuts: 2D and triangular. This controls QCD.

 $\rightarrow \chi^2$ cut controls W+jets

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

Event

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

 \rightarrow Increase the acceptance for our signal by allowing events with low jet multiplicity and non-isolated leptons. This causes the number of qcd events to dominate.

 \rightarrow Introduce two alternative cuts: 2D and triangular. This controls QCD.

 $\rightarrow \chi^2$ cut controls W+jets

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

 \rightarrow Increase the acceptance for our signal by allowing events with low jet multiplicity and non-isolated leptons. This causes the number of qcd events to dominate.

 \rightarrow Introduce two alternative cuts: 2D and triangular. This controls QCD.

 $\rightarrow \chi^2$ cut controls W+jets

Monte Carlo Samples

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

- MADGRAPH-PYTHIA combination is used to generate high-mass resonances with $\Gamma/m = 0.01$ and $\Gamma/m = 0.10$, where Γ is the width of the resonance, m=0.5,0.75,1,1.25,1.5,2, and 3 TeV resonance mass
 - PYTHIA 8 is used to generate a KK gluon excitation
 - \odot PYTHIA and ${\rm MADGRAPH}$ used to generate backgrounds
- All samples include in-time and out-of-time pileup, re-weighted to reflect actual pileup conditions determined from data

Monte Carlo Samples

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

- MADGRAPH-PYTHIA combination is used to generate high-mass resonances with $\Gamma/m = 0.01$ and $\Gamma/m = 0.10$, where Γ is the width of the resonance, m=0.5,0.75,1,1.25,1.5,2, and 3 TeV resonance mass
- PYTHIA 8 is used to generate a KK gluon excitation
- $\,\circ\,$ PYTHIA and MADGRAPH used to generate backgrounds
- All samples include in-time and out-of-time pileup, re-weighted to reflect actual pileup conditions determined from data

Monte Carlo Samples

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

- MADGRAPH-PYTHIA combination is used to generate high-mass resonances with $\Gamma/m = 0.01$ and $\Gamma/m = 0.10$, where Γ is the width of the resonance, m=0.5,0.75,1,1.25,1.5,2, and 3 TeV resonance mass
 - PYTHIA 8 is used to generate a KK gluon excitation
 - $\circ~\ensuremath{\mathrm{PYTHIA}}$ and $\ensuremath{\mathrm{MadGraph}}$ used to generate backgrounds
- All samples include in-time and out-of-time pileup, re-weighted to reflect actual pileup conditions determined from data

Cross-Sections

Search for $t\bar{t}$ resonances in semileptonic final states

states	Process	σ [pb]	Order	Generator
urner	tī	234	approx. NNLO	POWHEG
	W+jet	37509	NNLO	MadGraph
	WW	54.8	NLO	pythia 6
	WZ	33.2	NLO	pythia 6
	ZZ	8.059	NLO	pythia 6
	Z+jets	3504	NNLO	MadGraph
	Single <i>t</i> , s-channel	3.79	approx. NNLO	POWHEG
Carlo	Single \overline{t} , s-channel	1.76	approx. NNLO	POWHEG
!S	Single <i>t</i> , t-channel	56.4	approx. NNLO	POWHEG
	Single \overline{t} , t-channel	30.7	approx. NNLO	POWHEG
	Single <i>t</i> , tW production	11.1	approx. NNLO	POWHEG
	Single \overline{t} , tW production	11.1	approx. NNLO	POWHEG

Conclusions

Monte

Number of Events

с. I.с .		Electron+Jets Channel		Muon+Jets Channel	
Search for tt	Sample	$N_{b-tag} = 0$	$N_{b-tag}1$	$N_{b-tag} = 0$	$N_{b-tag}1$
semileptonic	Z', M=0.5TeV/c ² (1%)	5.6	9.7	5.1	8.9
final states	Z', M=0.75TeV/c ² (1%)	50.7	108	59.2	114
	Z', $M=1TeV/c^2$ (1%)	134.9	246.1	145	247.1
P. Turner	Z', M=1.25TeV/c ² (1%)	211.3	319.4	222	321.6
	Z', M=1.5TeV/c ² (1%)	287.2	322.4	324.1	343.3
	Z', M=2TeV/c ² (1%)	355.4	300.3	497.8	318.7
	Z', M=3TeV/ c^2 (1%)	362.9	199.4	609.2	251.4
	Z', M=0.5TeV/c ² (10%)	7.6	11.3	6.4	14.1
	Z', M=0.75TeV/c ² (10%)	51.9	112.3	53.2	101.6
	Z', M=1TeV/c ² (10%)	118.5	216.8	133.4	230.7
	Z', M=1.25TeV/c ² (10%)	187.2	285.9	210.2	300.2
	Z', M=1.5TeV/c ² (10%)	261.2	290.5	287.8	323.8
	Z', M=2TeV/c ² (10%)	298.9	268.5	408.9	298.9
	Z', M=3TeV/c ² (10%)	243.9	218.6	356.2	231.1
	g_{KK} , M=1TeV/ c^2	101.9	163.4	119.8	118
20culte	g_{KK} , M=1.5TeV/ c^2	178.3	215.1	217.8	250.6
(esuits	g_{KK} , M=2TeV/ c^2	202	195.6	281.7	224
	g_{KK} , M=3TeV/ c^2	151.6	154.7	224.2	174.1
	Diboson	29.3	3.3	43.1	4.9
	Single_Top	266.6	384.5	284.4	418.2
		2583.8	4372.9	2854.5	4718.5
	VV+Jets(+D) W(+jets(+c))	25.7	35.8	21.5 421.1	34.0
	W+jets(+light)	1985 5	49.6	2282	62.4
	Z+jets	76.3	5.9	121.3	9.6
	Total Background	5287±703	4875±658	6028±741	5285±629
	Data 2012	5346	4820	5959	5339

41 / 56

Invariant Mass Distributions

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction CMS Detect

Event Selectio

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

42 / 56

Statistical Analysis

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

 $M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

• Statistical analysis is defined by using a bin likelihood of the invariant mass of the reconstructed $t\bar{t}$ system

$$L(\beta|data) = \prod_{i=1}^{N_{bins}} \frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!}$$

$$\mu_i = \sum_k \beta_k T_{k,i}$$

- $T_{k,i}$ is the i-bin content for k-template.
- Lognormal distributions are used as prior for all the systematic uncertainties.

Summary of Systematic Uncertainties

Search for tt				
resonances in	Source of systematic uncertainty	Uncertainty	Туре	
semileptonic	ttbar cross section	15%	Normalization	
final states	electron trigger and id	5%	Normalization	
р. т	Single top cross section	50%	Normalization	
P. Turner	W _{light} +jets cross section	50%	Normalization	
	W_{heavy} +jets cross section	100%	Normalization	
Introduction	Z+jets cross section	100%	Normalization	
	Luminosity	4.4%	Normalization	
CMS Detector	muon trigger and id	$\pm 1\sigma(\eta)$	Normalization & Shape	
	Jet Energy Scale	$\pm 1\sigma(p_T, \eta)$	Normalization & Shape	
Event	Jet Energy Resolution	$\pm 1\sigma(\eta)$	Normalization & Shape	
Selection	b-tagging	$\pm 1\sigma(p_T, \eta)$	Normalization & Shape	
M Recon-	Mistag Rate	$\pm 1\sigma(p_T, \eta)$	Normalization & Shape	
struction	Pileup	$\pm 1\sigma$	Normalization & Shape	
Struction	PDFs	CTEQ6 (CT10) set	Normalization & Shape	
Monte Carlo	Scale $(Q^2 = M(t)^2 + \Sigma p_T(jet)^2)$ for $t\bar{t}$	2Q ² and 0.5Q ²	Normalization & Shape	
Samples	Scale $(Q^2 = M(t)^2 + \Sigma p_T(jet)^2)$ for W/Z+jets	2Q ² and 0.5Q ²	Normalization & Shape	
	Matching for W/Z+jets	2 and 0.5 x default	Normalization & Shape	
Results	CMS /6 = 8 TeV L = 19.6 fb ⁻¹	CMS iš = 8 TeV	L = 19.6 fb ⁻¹	
Constant of	1.006	e 1.06 -	brining plus received	
Analysia	1.004	1.04	smithig million	
Analysis	1.002	1.02		
Limits				
Linnes	0.308-	0.96		
Conclusions	0.001	0.94		
	0 1000 2000 3000 4000 5000 MLIGeV/c1	0 1000 2000 3000	4000 5000 Mr (GeV/c ¹)	
Backup Slides				

Cross Section

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Recon struction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions Backup Slides Bayesian statistical method used to extract 95% C.L. upper limits on Z' \to $t\bar{t}$ cross-section

Expected limits given by background-only pseudo-experiments ($\mu = 0$). Expected limit is given by the median of the distribution of upper limits, 68% and 95% give the \pm 1 and \pm 2 standard deviations.

Limits are calculated for threshold and boosted analysis separately, then combined where the transition between threshold and boosted is based on the expected sensitivity.

Limits (Narrow Resonances)

The 95% CL upper limits for narrow resonances. Theoretical prediction Harris et. al.

Limits (Wide Resonances)

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selectior

M_{tī} Recorstruction

Monte Carl Samples

Results

Statistica Analysis

Limit

Conclusions Backup Slide

The 95% CL upper limits for resonances with 10% width. Theoretical prediction Harris et. al.

Limits (KK Resonances)

The 95% CL upper limits for Kaluza-Klein excitations of the gluon. Theoretical prediction Agashe et. al.

Conclusions

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Recorstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

- We have presented a model-independent search for the production of heavy resonances decaying into $t\bar{t}$
- We have combined the results of two complementary analyses optimized for the threshold and boosted regions
- No evidence for a massive resonance is found, therefore we set model-independent limits on the production cross section of non-SM particles decaying to $t\bar{t}$

	0.5 TeV		2 TeV	
	Expected	Observed	Expected	Observed
Narrow	1.91 ^{+0.76} _{-0.53} pb	1.94 pb	0.034 ^{+0.018} _{-0.011} pb	0.029 pb
Wide	1.69 ^{+0.67} _{-0.45} pb	1.71 pb	0.060 ^{+0.032} _{-0.019} pb	0.045 pb

Conclusions

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Recor struction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

- In addition, we set the following limits at 95% C.L. on the production of non-SM particles in specific models.
 - Topcolor Z' bosons with a width of 1.2 and 10% are excluded at 95% C.L. for masses below 2.10 TeV and 2.68 TeV.
 - Kaluza-Klein excitations of a gluon with masses below 2.54 TeV in the Randall-Sundrum model are excluded and an upper limit of 0.101 pb $(0.150^{+0.072}_{-0.055}$ pb expected) is set on the production cross section times branching fraction for resonance of 2 TeV.
- Compared to the results of previous analyses, the upper limits on the masses of these specific resonances have been improved by several hundred GeV.

References

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

The CMS Collaboration (2013)

Search for $t\bar{t}$ resonances in semileptonic final states in pp collisions at $\sqrt{s}=8~{\rm TeV}$

CMS PAS B2G-12-006 Available on the CERN CDS information server

R. M. Harris and S. Jain

Cross Sections for Leptophobic Topcolor Z decaying to top-antitop *Eur. Phys. J. C 72 (2012) 2072* doi:10.1140/epjc/s10052-012-2072-4, arXiv:hep-ph/1112.4928

🚺 K. Agashe et al.

LHC Signals from Warped Extra Dimensions

Phys. Rev. D 77 *(2008) 015003* doi:10.1103/PhysRevD.77.015003, arXiv:hep-ph/0612015

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

M_{tī} Recon struction

Monte Carlo Samples

Results

Statistica Analysis

Limits

Conclusions

Backup Slides

The End

Backup Slides

Figure : Distribution of the reconstructed mass of the leptonically decaying top quark in the muon channel of the high-mass analysis.

Statistica Analysis

Limits

Conclusions

Backup Slides

Figure : Distribution of the reconstructed mass of the leptonically decaying top quark in the electron channel of the high-mass analysis.

Backup Slides

Figure : Distribution of the reconstructed mass of the hadronically decaying top quark in the muon channel of the high-mass analysis.

Backup Slides

Figure : Distribution of the reconstructed mass of the hadronically decaying top quark in the electron channel of the high-mass analysis.