Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

$M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

Search for $t\bar{t}$ resonances in semileptonic final states in pp collisions at $\sqrt{s}=8$ TeV

Paul Turner on behalf of the CMS Collaboration

University of Illinois at Chicago

pturne7@uic.edu

DPF 2013 Meeting at UC Santa Cruz

August 15, 2013
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Outline

1. Introduction
2. CMS Detector
3. Event Selection
4. $M_{t\bar{t}}$ Reconstruction
5. Monte Carlo Samples
6. Results
7. Statistical Analysis
8. Limits
9. Conclusions
10. Backup Slides
Several extensions to the standard model (SM) predict gauge interactions with enhanced couplings to the top quark.

Massive new particles can manifest as resonances in the production of \(t\bar{t} \) pairs at the Large Hadron Collider (LHC).

Each result in a distorted \(t\bar{t} \) invariant mass spectrum w.r.t. the SM expectation. This allows for a model independent search for beyond standard model (BSM) physics by looking at the \(t\bar{t} \) invariant mass!
Several extensions to the standard model (SM) predict gauge interactions with enhanced couplings to the top quark.

Massive new particles can manifest as resonances in the production of $t\bar{t}$ pairs at the Large Hadron Collider (LHC).

Each result in a distorted $t\bar{t}$ invariant mass spectrum w.r.t. the SM expectation. This allows for a model independent search for beyond standard model (BSM) physics by looking at the $t\bar{t}$ invariant mass!
Introduction

Several extensions to the standard model (SM) predict gauge interactions with enhanced couplings to the top quark.

Massive new particles can manifest as resonances in the production of $t\bar{t}$ pairs at the Large Hadron Collider (LHC).

Each result in a distorted $t\bar{t}$ invariant mass spectrum w.r.t. the SM expectation. **This allows for a model independent search for beyond standard model (BSM) physics by looking at the $t\bar{t}$ invariant mass!**
Introduction

Specific BSM models:
- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, ...
- Leptophobic Topcolor $Z' -$ Harris et. al.
- Kaluza-Klein (KK) excitations of gluons - Agashe et. al.

We present a model-independent search for the production of heavy resonances decaying into $t\bar{t}$ using data recorded in 2012 by the Compact Muon Solenoid (CMS) detector in pp collisions at $\sqrt{s}=8$TeV at the LHC.

We place limits on specific models (Harris et. al., Agashe et. al.) that predict heavy $t\bar{t}$ resonances.
Introduction

Specific BSM models:
- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, ...
- Leptophobic Topcolor Z' - Harris et. al.
- Kaluza-Klein (KK) excitations of gluons - Agashe et. al.

We present a model-independent search for the production of heavy resonances decaying into $t\bar{t}$ using data recorded in 2012 by the Compact Muon Solenoid (CMS) detector in pp collisions at $\sqrt{s}=8$TeV at the LHC.

We place limits on specific models (Harris et. al., Agashe et. al.) that predict heavy $t\bar{t}$ resonances.
Introduction

Specific BSM models:
- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, ...
- Leptophobic Topcolor Z’ - Harris et. al.
- Kaluza-Klein (KK) excitations of gluons - Agashe et. al.

We present a model-independent search for the production of heavy resonances decaying into $t\bar{t}$ using data recorded in 2012 by the Compact Muon Solenoid (CMS) detector in pp collisions at $\sqrt{s}=8$TeV at the LHC.

We place limits on specific models (Harris et. al., Agashe et. al.) that predict heavy $t\bar{t}$ resonances.
Introduction

Specific BSM models:
- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, ...
- Leptophobic Topcolor Z' - Harris et. al.
- Kaluza-Klein (KK) excitations of gluons - Agashe et. al.

We present a model-independent search for the production of heavy resonances decaying into $t\bar{t}$ using data recorded in 2012 by the Compact Muon Solenoid (CMS) detector in pp collisions at $\sqrt{s}=8$ TeV at the LHC.

We place limits on specific models (Harris et. al., Agashe et. al.) that predict heavy $t\bar{t}$ resonances.
Introduction

Specific BSM models:
- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, ...
- Leptophobic Topcolor Z' - Harris et. al.
- Kaluza-Klein (KK) excitations of gluons - Agashe et. al.

We present a model-independent search for the production of heavy resonances decaying into $t\bar{t}$ using data recorded in 2012 by the Compact Muon Solenoid (CMS) detector in pp collisions at $\sqrt{s}=8$TeV at the LHC.

We place limits on specific models (Harris et. al., Agashe et. al.) that predict heavy $t\bar{t}$ resonances.
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

Specific BSM models:
- Colorons, axigluons, gravitons in Randall-Sundrum model extensions, ...
- Leptophobic Topcolor Z' - Harris et. al.
- Kaluza-Klein (KK) excitations of gluons - Agashe et. al.

We present a model-independent search for the production of heavy resonances decaying into $t\bar{t}$ using data recorded in 2012 by the Compact Muon Solenoid (CMS) detector in pp collisions at $\sqrt{s}=8TeV$ at the LHC.

We place limits on specific models (Harris et. al., Agashe et. al.) that predict heavy $t\bar{t}$ resonances.
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

$M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

- Superconducting solenoid, 6m internal diameter, 3.8T
- Silicon Pixel and Strip Tracker
- Lead Tungstate Crystal Electromagnetic Calorimeter (ECAL)
- Brass/Scintillator hadron calorimeter (HCAL)
- Gas-ionization muon chambers are embedded in the steel return yoke of the solenoid
- Forward calorimetry complements the barrel and endcap detectors
Data consists of 19.6 fb^{-1} integrated luminosity of pp collisions at $\sqrt{s} = 8 \text{ TeV}$ collected by the CMS experiment in 2012.

→ Heavy resonance means boosted topology!

Electron Channel Trigger
- Electron $w/p_T > 30\text{GeV}$
- Jet $w/p_T > 100\text{GeV}$
- Jet $w/p_T > 25\text{GeV}$

Muon Channel Trigger
- Muon $w/p_T > 40\text{GeV}$
Event Selection

Data consists of 19.6 fb^{-1} integrated luminosity of pp collisions at $\sqrt{s} = 8$ TeV collected by the CMS experiment in 2012.

→ Heavy resonance means boosted topology!

Electron Channel Trigger
- Electron $w/p_T > 30$GeV
- Jet $w/p_T > 100$GeV
- Jet $w/p_T > 25$GeV

Muon Channel Trigger
- Muon $w/p_T > 40$GeV
Event Selection

Data consists of 19.6 fb^{-1} integrated luminosity of pp collisions at $\sqrt{s} = 8$ TeV collected by the CMS experiment in 2012.

→ Heavy resonance means boosted topology!

Electron Channel Trigger
- Electron $w/p_{T} > 30$GeV
- Jet $w/p_{T} > 100$GeV
- Jet $w/p_{T} > 25$GeV

Muon Channel Trigger
- Muon $w/p_{T} > 40$GeV
Data consists of $19.6 \ fb^{-1}$ integrated luminosity of pp collisions at $\sqrt{s} = 8 \ TeV$ collected by the CMS experiment in 2012.

\rightarrow Heavy resonance means boosted topology!

Electron Channel Trigger
- Electron $w/p_T > 30\GeV$
- Jet $w/p_T > 100\GeV$
- Jet $w/p_T > 25\GeV$

Muon Channel Trigger
- Muon $w/p_T > 40\GeV$
Offline Selection

- One electron (muon) with $p_T > 35$ GeV (45 GeV), $|\eta| < 2.5$ (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets $|\eta| < 2.4$
 - Leading jet $p_T > 150$ GeV, other jets $p_T > 50$ GeV
- $H_T^{lep} = E_T^{miss} + p_T^{lep} > 150$ GeV (Scalar)
- $E_T^{miss} > 50$ GeV
Offline Selection

- One electron (muon) \(p_T > 35 \text{ GeV}(45 \text{ GeV}), |\eta| < 2.5 \) (2.1)
 - No isolation requirement!
- Veto on second lepton
 - At least two jets \(|\eta| < 2.4 \)
 - Leading jet \(p_T > 150 \text{ GeV} \), other jets \(p_T > 50 \text{ GeV} \)
 - \(H_T^{lep} = E_T^{miss} + p_T^{lep} > 150 \text{ GeV} \) (Scalar)
 - \(E_T^{miss} > 50 \text{ GeV} \)
Offline Selection

- One electron (muon) \(p_T > 35 \text{ GeV} (45 \text{ GeV}), |\eta| < 2.5 \) (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets \(|\eta| < 2.4 \)
 - Leading jet \(p_T > 150 \text{ GeV} \), other jets \(p_T > 50 \text{ GeV} \)
- \(H_T^{\text{lep}} = E_T^{\text{miss}} + p_T^{\text{lep}} > 150 \text{ GeV} \) (Scalar)
- \(E_T^{\text{miss}} > 50 \text{ GeV} \)
Offline Selection

- One electron (muon) $\text{w/ } p_T > 35 \text{ GeV}(45 \text{ GeV}), |\eta| < 2.5$ (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets $|\eta| < 2.4$
 - Leading jet $p_T > 150 \text{ GeV}$, other jets $p_T > 50 \text{ GeV}$
- $H_T^{\text{lep}} = E_T^{\text{miss}} + p_T^{\text{lep}} > 150 \text{ GeV}$ (Scalar)
- $E_T^{\text{miss}} > 50 \text{ GeV}$.

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction
CMS Detector
Event Selection
$M_{t\bar{t}}$ Reconstruction
Monte Carlo Samples
Results
Statistical Analysis
Limits
Conclusions
Backup Slides
Offline Selection

- One electron (muon) \(p_T > 35 \text{ GeV} (45 \text{ GeV}), |\eta| < 2.5 \) (2.1)
 - No isolation requirement!
- Veto on second lepton
- At least two jets \(|\eta| < 2.4\)
 - Leading jet \(p_T > 150 \text{ GeV} \), other jets \(p_T > 50 \text{ GeV} \)
- \(H_T^{\text{lep}} = E_T^{\text{miss}} + p_T^{\text{lep}} > 150 \text{ GeV} \) (Scalar)
- \(E_T^{\text{miss}} > 50 \text{ GeV} \)
Offline Selection

- 2D Cut: \(\Delta R(\text{lep}, \text{closestjet}) > 0.5 \) or \(p_{T,\text{rel}}(\text{lep}, \text{closestjet}) > 25 \text{GeV} \)

→ Do not cut hard on lepton isolation!
Offline Selection

- Triangular (topological) cut (removes events when E_T^{miss} opposite to electron or jet)

\[- \frac{1.5}{75 \text{ GeV}} E_T^{\text{miss}} + 1.5 < \Delta \Phi\{ (\text{e or j}), E_T^{\text{miss}} \} < \frac{1.5}{75 \text{ GeV}} E_T^{\text{miss}} + 1.5\]
Event Selection

Number of jets distribution in the electron (muon) channel of the high-mass analysis.
Event Selection

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction
CMS Detector
Event Selection
$M_{t\bar{t}}$ Reconstruction
Monte Carlo Samples
Results
Statistical Analysis
Limits
Conclusions
Backup Slides

Distance ΔR between the electron (muon) and the closest jet.

2D Cut : ΔR (lepton, closest jet) > 0.5
or $p_{T,rel}$ (lepton, closest jet) > 25 GeV
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction
CMS Detector
Event Selection
$M_{t\bar{t}}$ Reconstruction
Monte Carlo Samples
Results
Statistical Analysis
Limits
Conclusions
Backup Slides
Each candidate has a list of jets, lepton, and E_T^{miss} (neutrino)

- t_{had} reconstructed with at least one jet
- t_{lep} reconstructed with at least one jet, E_T^{miss}, and one lepton
- Permute jet assignments to generate hypotheses
Each candidate has a list of jets, lepton, and E_T^{miss} (neutrino)

- t_{had} reconstructed with at least one jet
- t_{lep} reconstructed with at least one jet, E_T^{miss}, and one lepton

Permute jet assignments to generate hypotheses
$M_{t\bar{t}}$ Reconstruction

- Each candidate has a list of jets, lepton, and E_T^{miss} (neutrino)
- t_{had} reconstructed with at least one jet
- t_{lep} reconstructed with at least one jet, E_T^{miss}, and one lepton
- Permute jet assignments to generate hypotheses
$M_{t\bar{t}}$ Reconstruction

- Each candidate has a list of jets, lepton, and E_T^{miss} (neutrino)
- t_{had} reconstructed with at least one jet
- t_{lep} reconstructed with at least one jet, E_T^{miss}, and one lepton
- Permute jet assignments to generate hypotheses
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction
CMS Detector
Event Selection
$M_{t\bar{t}}$ Reconstruction
Monte Carlo Samples
Results
Statistical Analysis
Limits
Conclusions
Backup Slides

χ^2 Cut

- Select hypothesis with minimal χ^2, Cut on $\chi^2 < 10$
 - $\chi^2 = \chi^2_{lep} + \chi^2_{had}$
Top Jet Candidate

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

$M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides
Selection Summary

→ Increase the acceptance for our signal by allowing events with low jet multiplicity and non-isolated leptons. This causes the number of qcd events to dominate.

→ Introduce two alternative cuts: 2D and triangular. This controls QCD.

→ χ^2 cut controls W+jets

→ Events are separated based on b-tagging. The aim is to have complementary channels with different W+jets/$t\bar{t}$ relative contributions.
Increase the acceptance for our signal by allowing events with low jet multiplicity and non-isolated leptons. This causes the number of QCD events to dominate.

Introduce two alternative cuts: 2D and triangular. This controls QCD.

χ^2 cut controls $W+$jets

Events are separated based on b-tagging. The aim is to have complementary channels with different $W+$jets/$t\bar{t}$ relative contributions.
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

$M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

Selection Summary

→ Increase the acceptance for our signal by allowing events with low jet multiplicity and non-isolated leptons. This causes the number of qcd events to dominate.

→ Introduce two alternative cuts: 2D and triangular. This controls QCD.

→ χ^2 cut controls W+jets

→ Events are separated based on b-tagging. The aim is to have complementary channels with different W+jets/$t\bar{t}$ relative contributions.
Selection Summary

→ Increase the acceptance for our signal by allowing events with low jet multiplicity and non-isolated leptons. This causes the number of QCD events to dominate.

→ Introduce two alternative cuts: 2D and triangular. This controls QCD.

→ χ^2 cut controls $W+\text{jets}$

→ Events are separated based on b-tagging. The aim is to have complementary channels with different $W+\text{jets}/t\bar{t}$ relative contributions.
Monte Carlo Samples

- MadGraph-pythia combination is used to generate high-mass resonances with $\Gamma/m = 0.01$ and $\Gamma/m = 0.10$, where Γ is the width of the resonance, $m=0.5,0.75,1,1.25,1.5,2,$ and 3 TeV resonance mass.
- Pythia 8 is used to generate a KK gluon excitation.
- Pythia and MadGraph used to generate backgrounds.
- All samples include in-time and out-of-time pileup, re-weighted to reflect actual pileup conditions determined from data.
Monte Carlo Samples

- **MadGraph-pythia** combination is used to generate high-mass resonances with $\Gamma/m = 0.01$ and $\Gamma/m = 0.10$, where Γ is the width of the resonance, $m=0.5, 0.75, 1, 1.25, 1.5, 2,$ and 3 TeV resonance mass.

- **Pythia 8** is used to generate a KK gluon excitation.

- **Pythia** and **MadGraph** used to generate backgrounds.

- All samples include in-time and out-of-time pileup, re-weighted to reflect actual pileup conditions determined from data.
Monte Carlo Samples

- MadGraph-pythia combination is used to generate high-mass resonances with $\Gamma/m = 0.01$ and $\Gamma/m = 0.10$, where Γ is the width of the resonance, $m = 0.5, 0.75, 1, 1.25, 1.5, 2, \text{and } 3$ TeV resonance mass.
- Pythia 8 is used to generate a KK gluon excitation.
- Pythia and MadGraph used to generate backgrounds.
- All samples include in-time and out-of-time pileup, re-weighted to reflect actual pileup conditions determined from data.
Cross-Sections

<table>
<thead>
<tr>
<th>Process</th>
<th>σ [pb]</th>
<th>Order</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>234</td>
<td>approx. NNLO</td>
<td>POWHEG</td>
</tr>
<tr>
<td>W+jet</td>
<td>37509</td>
<td>NNLO</td>
<td>MadGraph</td>
</tr>
<tr>
<td>WW</td>
<td>54.8</td>
<td>NLO</td>
<td>Pythia 6</td>
</tr>
<tr>
<td>WZ</td>
<td>33.2</td>
<td>NLO</td>
<td>Pythia 6</td>
</tr>
<tr>
<td>ZZ</td>
<td>8.059</td>
<td>NLO</td>
<td>Pythia 6</td>
</tr>
<tr>
<td>$Z+\text{jets}$</td>
<td>3504</td>
<td>NNLO</td>
<td>MadGraph</td>
</tr>
<tr>
<td>Single t, s-channel</td>
<td>3.79</td>
<td>approx. NNLO</td>
<td>POWHEG</td>
</tr>
<tr>
<td>Single \bar{t}, s-channel</td>
<td>1.76</td>
<td>approx. NNLO</td>
<td>POWHEG</td>
</tr>
<tr>
<td>Single t, t-channel</td>
<td>56.4</td>
<td>approx. NNLO</td>
<td>POWHEG</td>
</tr>
<tr>
<td>Single \bar{t}, t-channel</td>
<td>30.7</td>
<td>approx. NNLO</td>
<td>POWHEG</td>
</tr>
<tr>
<td>Single t, tW production</td>
<td>11.1</td>
<td>approx. NNLO</td>
<td>POWHEG</td>
</tr>
<tr>
<td>Single \bar{t}, tW production</td>
<td>11.1</td>
<td>approx. NNLO</td>
<td>POWHEG</td>
</tr>
</tbody>
</table>
Number of Events

<table>
<thead>
<tr>
<th>Sample</th>
<th>Electron+Jets Channel</th>
<th>Muon+Jets Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N_{b\text{-tag}}=0$</td>
<td>$N_{b\text{-tag}}=1$</td>
</tr>
<tr>
<td>$Z', M=0.5\text{TeV}/c^2$</td>
<td>5.6</td>
<td>9.7</td>
</tr>
<tr>
<td>$Z', M=0.75\text{TeV}/c^2$</td>
<td>50.7</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>134.9</td>
<td>246.1</td>
</tr>
<tr>
<td>$Z', M=1\text{TeV}/c^2$</td>
<td>211.3</td>
<td>319.4</td>
</tr>
<tr>
<td>$Z', M=1.25\text{TeV}/c^2$</td>
<td>287.2</td>
<td>322.4</td>
</tr>
<tr>
<td>$Z', M=1.5\text{TeV}/c^2$</td>
<td>355.4</td>
<td>300.3</td>
</tr>
<tr>
<td>$Z', M=2\text{TeV}/c^2$</td>
<td>362.9</td>
<td>199.4</td>
</tr>
<tr>
<td>$Z', M=0.5\text{TeV}/c^2$</td>
<td>7.6</td>
<td>11.3</td>
</tr>
<tr>
<td>$Z', M=0.75\text{TeV}/c^2$</td>
<td>51.9</td>
<td>112.3</td>
</tr>
<tr>
<td></td>
<td>118.5</td>
<td>216.8</td>
</tr>
<tr>
<td>$Z', M=1\text{TeV}/c^2$</td>
<td>187.2</td>
<td>285.9</td>
</tr>
<tr>
<td>$Z', M=1.25\text{TeV}/c^2$</td>
<td>261.2</td>
<td>290.5</td>
</tr>
<tr>
<td>$Z', M=1.5\text{TeV}/c^2$</td>
<td>298.9</td>
<td>268.5</td>
</tr>
<tr>
<td>$Z', M=2\text{TeV}/c^2$</td>
<td>243.9</td>
<td>218.6</td>
</tr>
<tr>
<td>$g_{KK}, M=1\text{TeV}/c^2$</td>
<td>101.9</td>
<td>163.4</td>
</tr>
<tr>
<td>$g_{KK}, M=1.5\text{TeV}/c^2$</td>
<td>178.3</td>
<td>215.1</td>
</tr>
<tr>
<td>$g_{KK}, M=2\text{TeV}/c^2$</td>
<td>202</td>
<td>195.6</td>
</tr>
<tr>
<td>$g_{KK}, M=3\text{TeV}/c^2$</td>
<td>151.6</td>
<td>154.7</td>
</tr>
<tr>
<td>Diboson</td>
<td>29.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Single Top</td>
<td>266.6</td>
<td>384.5</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>2583.8</td>
<td>4372.9</td>
</tr>
<tr>
<td>$W+\text{jets}(+b)$</td>
<td>25.7</td>
<td>35.8</td>
</tr>
<tr>
<td>$W+\text{jets}(+c)$</td>
<td>319.8</td>
<td>23.2</td>
</tr>
<tr>
<td>$W+\text{jets}(+\text{light})$</td>
<td>1985.5</td>
<td>49.6</td>
</tr>
<tr>
<td>$Z+\text{jets}$</td>
<td>76.3</td>
<td>5.9</td>
</tr>
<tr>
<td>Total Background</td>
<td>5287±703</td>
<td>4875±658</td>
</tr>
<tr>
<td>Data 2012</td>
<td>5346</td>
<td>4820</td>
</tr>
</tbody>
</table>
Invariant Mass Distributions

Muon Channel:

Electron Channel:
Statistical Analysis

- Statistical analysis is defined by using a bin likelihood of the invariant mass of the reconstructed $t\bar{t}$ system

$$L(\beta | data) = \prod_{i=1}^{N_{bins}} \frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!}$$

$$\mu_i = \sum_k \beta_k T_{k,i}$$

- $T_{k,i}$ is the i-bin content for k-template.
- Lognormal distributions are used as prior for all the systematic uncertainties.
Summary of Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source of systematic uncertainty</th>
<th>Uncertainty</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttbar cross section</td>
<td>15%</td>
<td>Normalization</td>
</tr>
<tr>
<td>electron trigger and id</td>
<td>5%</td>
<td>Normalization</td>
</tr>
<tr>
<td>Single top cross section</td>
<td>50%</td>
<td>Normalization</td>
</tr>
<tr>
<td>W_{light} +jets cross section</td>
<td>50%</td>
<td>Normalization</td>
</tr>
<tr>
<td>W_{heavy} +jets cross section</td>
<td>100%</td>
<td>Normalization</td>
</tr>
<tr>
<td>Z+jets cross section</td>
<td>100%</td>
<td>Normalization</td>
</tr>
<tr>
<td>Luminosity</td>
<td>4.4%</td>
<td>Normalization</td>
</tr>
<tr>
<td>muon trigger and id</td>
<td>±1σ(η)</td>
<td>Normalization & Shape</td>
</tr>
<tr>
<td>Jet Energy Scale</td>
<td>±1σ(p_T, η)</td>
<td>Normalization & Shape</td>
</tr>
<tr>
<td>Jet Energy Resolution</td>
<td>±1σ(η)</td>
<td>Normalization & Shape</td>
</tr>
<tr>
<td>b-tagging</td>
<td>±1σ(p_T, η)</td>
<td>Normalization & Shape</td>
</tr>
<tr>
<td>Mistag Rate</td>
<td>±1σ</td>
<td>Normalization & Shape</td>
</tr>
<tr>
<td>Pileup</td>
<td>CTEQ6 (CT10) set</td>
<td>Normalization & Shape</td>
</tr>
<tr>
<td>PDFs</td>
<td>$2Q^2$ and $0.5Q^2$</td>
<td>Normalization & Shape</td>
</tr>
<tr>
<td>Scale ($Q^2 = M(t)^2 + \Sigma p_T(jet)^2$) for $t\bar{t}$</td>
<td>$2Q^2$ and $0.5Q^2$</td>
<td>Normalization & Shape</td>
</tr>
<tr>
<td>Scale ($Q^2 = M(t)^2 + \Sigma p_T(jet)^2$) for W/Z+jets</td>
<td>2 and $0.5 \times$ default</td>
<td>Normalization & Shape</td>
</tr>
</tbody>
</table>

Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction
CMS Detector
Event Selection
$M_{t\bar{t}}$ Reconstruction
Monte Carlo Samples
Results
Statistical Analysis
Limits
Conclusions
Backup Slides
Bayesian statistical method used to extract 95% C.L. upper limits on $Z' \rightarrow t\bar{t}$ cross-section

Expected limits given by background-only pseudo-experiments ($\mu = 0$). Expected limit is given by the median of the distribution of upper limits, 68% and 95% give the ± 1 and ± 2 standard deviations.

Limits are calculated for threshold and boosted analysis separately, then combined where the transition between threshold and boosted is based on the expected sensitivity.
The 95% CL upper limits for narrow resonances. Theoretical prediction Harris et. al.
The 95% CL upper limits for resonances with 10% width. Theoretical prediction Harris et al.
The 95% CL upper limits for Kaluza-Klein excitations of the gluon. Theoretical prediction Agashe et. al.
Conclusions

- We have presented a model-independent search for the production of heavy resonances decaying into $t\bar{t}$
- We have combined the results of two complementary analyses optimized for the threshold and boosted regions
- No evidence for a massive resonance is found, therefore we set model-independent limits on the production cross section of non-SM particles decaying to $t\bar{t}$

<table>
<thead>
<tr>
<th></th>
<th>0.5 TeV</th>
<th>2 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
<td>Observed</td>
</tr>
<tr>
<td>Narrow</td>
<td>$1.91^{+0.76}_{-0.53}$ pb</td>
<td>1.94 pb</td>
</tr>
<tr>
<td>Wide</td>
<td>$1.69^{+0.67}_{-0.45}$ pb</td>
<td>1.71 pb</td>
</tr>
</tbody>
</table>
In addition, we set the following limits at 95% C.L. on the production of non-SM particles in specific models.

- Topcolor Z' bosons with a width of 1.2 and 10% are excluded at 95% C.L. for masses below 2.10 TeV and 2.68 TeV.
- Kaluza-Klein excitations of a gluon with masses below 2.54 TeV in the Randall-Sundrum model are excluded and an upper limit of $0.101 \text{ pb} (0.150_{-0.055}^{+0.072} \text{ pb expected})$ is set on the production cross section times branching fraction for resonance of 2 TeV.

Compared to the results of previous analyses, the upper limits on the masses of these specific resonances have been improved by several hundred GeV.
The CMS Collaboration (2013)
Search for $t\bar{t}$ resonances in semileptonic final states in pp collisions at $\sqrt{s} = 8$ TeV

CMS PAS B2G-12-006 Available on the CERN CDS information server

R. M. Harris and S. Jain
Cross Sections for Leptophobic Topcolor Z decaying to top-antitop

K. Agashe et al.
LHC Signals from Warped Extra Dimensions
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction
CMS Detector
Event Selection
$M_{t\bar{t}}$ Reconstruction
Monte Carlo Samples
Results
Statistical Analysis
Limits
Conclusions
Backup Slides

The End
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

$M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Figure: Distribution of the reconstructed mass of the leptonically decaying top quark in the muon channel of the high-mass analysis.
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction
CMS Detector
Event Selection
$M_{t\bar{t}}$ Reconstruction
Monte Carlo Samples
Results
Statistical Analysis
Limits
Conclusions
Backup Slides

Figure: Distribution of the reconstructed mass of the leptonically decaying top quark in the electron channel of the high-mass analysis.
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction
CMS Detector
Event Selection
$M_{t\bar{t}}$ Reconstruction
Monte Carlo Samples
Results
Statistical Analysis
Limits
Conclusions
Backup Slides

Figure: Distribution of the reconstructed mass of the hadronically decaying top quark in the muon channel of the high-mass analysis.
Search for $t\bar{t}$ resonances in semileptonic final states

P. Turner

Introduction

CMS Detector

Event Selection

$M_{t\bar{t}}$ Reconstruction

Monte Carlo Samples

Results

Statistical Analysis

Limits

Conclusions

Backup Slides

Figure: Distribution of the reconstructed mass of the hadronically decaying top quark in the electron channel of the high-mass analysis.