

The Dark Energy Survey

1		

DARK ENERGY SURVEY

Carlos Cunha Stanford University

DFP Meeting, August 14, 2013

Constraints from Supernovae (SDSS, SNLS), CMB (WMAP, Planck), and Large-scale Structure (SDSS)

Assuming constant *w*

Assuming $w = w_0 + w_a(1-a)$

Sullivan etal 2011

Ade etal 2013

	The collaboration				
Fermilab — The Fermi National Accelerator Laboratory	LIUC/NCSA — The University of Illinois at Urbana-Champaign	OSU — The Ohio State University			
Section Chicago — The University of Chicago	LBNL — The Lawrence Berkeley National Laboratory	TAMU — Texas A&M University			
 NOAO — The National Optical Astronomy Observatory United Kingdom DES Collaboration UCL - University College London <u>Cambridge</u> - University of Cambridge <u>Edinburgh</u> - University of Edinburgh <u>Portsmouth</u> - University of Portsmouth 	 Spain DES Collaboration IEEC/CSIC - Instituto de Ciencias del Espacio, IFAE - Institut de Fisica d'Altes Energies <u>CIEMAT</u> - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas 	Munich—Universitäts-Sternwarte München			
 <u>Sussex</u> - University of Sussex <u>Nottingham</u> - University of Nottingham 	Michigan — The University of Michigan	ANL — Argonne National Laboratory			
OES-Brazil Consortium	🞇 Pennsylvania — The University of	Santa Cruz-SLAC-Stanford DES			

- ON Observatorio Nacional
- <u>CBPF</u> Centro Brasileiro de Pesquisas Fisicas
- <u>UFRGS</u> Universidade Federal do Rio Grande do Sul

ETH-Zuerich — Idgenössische Technische Hochschule Zürich wiss Federal Institute of Technology Zurich Technische Hochschule Zuerich • Santa Cruz - University of California

• SLAC - SLAC National Accelerator

• Stanford - Stanford University

Santa Cruz

Laboratory

Pennsylvania

The Dark Energy Survey

DARK ENERGY SURVEY

3 projects

- New 3 deg² FoV camera (DECAM) in Blanco 4-m
- Data management system (NCSA)
- CTIO Facilities Improvement Project (telescope)

Two multiband surveys

Main: 5000 deg² \approx 5 (h⁻¹Gpc)³ 300 million galaxies g, r, i, z, Y to 24th mag

SNe: 30 deg² repeat

www.darkenergysurvey.org

- Survey 2013-2018 (525 nights)
- Camera available for community use the rest of the time (70%) + u-band

Project Timeline

• Project initiated 2003

- DECam R&D 2004-8
- Camera construction 2008-12
- Imager installation: Aug. 30 (2012)
- First light: Sept. 12 (2012)
- Commissioning: late Aug. to Oct. (2012)
- Science Verification: Nov Feb

~115 deg² of data to full depth are now public

• First season: starting Sept. 2013

DARK ENERGY SURVEY

DES Survey Strategy

Survey Strategy: Exposure Time

DARK ENERGY SURVEY

Sept-Feb observing seasons

80-100 sec exposures

2 filters per pointing (typically) gr in dark time izy in bright/grey time

2 survey tilings/filter/year

Survey Strategy: Exposure Time

DARK ENERGY SURVEY

Sept-Feb observing seasons

80-100 sec exposures

2 filters per pointing (typically) gr in dark time izy in bright/grey time

2 survey tilings/filter/year

Total: 4000 secs per patch, <u>equally distributed between</u> <u>griz</u>, minus 160 secs for y.

Survey Strategy: Exposure Time

DARK ENERGY SURVEY

Sept-Feb observing seasons

80-100 sec exposures

2 filters per pointing (typically) gr in dark time izy in bright/grey time

2 survey tilings/filter/year

Total: 4000 secs per patch, <u>equally distributed between</u> <u>griz</u>, minus 160 secs for y.

Equal exposure times:

- maximizes galaxies usable for weak lensing,
- yields best photometric redshifts, and cluster finding
- most spatially homogeneous survey strategy

DARK ENERGY SURVEY

DES Science Program

The Dark Energy Survey

 Survey project using 4 complementary techniques:

- I. Cluster Counts
- II. Weak Lensing
- III. Large-scale Structure
- IV. Supernovae

Plus, tons of auxiliary science:

- Stars and Milky Way
- Quasars
- Galaxy Evolution
- Milky Way

- Radial distances depend on *geometry* of Universe
- Foreground mass distribution depends on *growth* of structure

- Shear-shear + shear-galaxy + galaxy-galaxy correlations
- Complementary probe: magnification

DARK ENERGY SURVEY

by

The mean number of clusters with mass $M > M_{th}$ is given

$$\overline{m}(M > M_{th}, z) = \int dV \int_{M_{th}}^{\infty} d\ln M \frac{dn}{d\ln M}$$
Depends
on
geometry.
Mass Function (eg. Jenkins).
Derived from power spectrum.
Depends on cosmology through
growth of structure.

DARK ENERGY SURVEY

Galaxy Clusters Counts

For models with larger w:

- less volume --> less clusters at low redshift.
- structure grows less rapidly
 -> more clusters at high redshift.

Models are normalized to produce same cluster abundance at low redshifts

DARK ENERGY SURVEY

> Baryon Acoustic Oscillations

Acoustic scale provides standard ruler. Scale set by lastscattering surface (**s=c_s*t_{ls}**)

DARK ENERGY SURVEY

> Baryon Acoustic Oscillations

Galaxy angular power spectrum in photo-z bins (relative to model without BAO)

Probe deeper than SDSS redshift survey (x10 increase in volume)

Fosalba & Gaztanaga

- 30 sq deg time-domain survey
- ~4000 well-sampled SNe Ia to z ~1 (plus 8000 okay ones)
- Factor ~2-4x statistics vs. other samples around 2018
- ~5 days cadence

Bernstein et al

True z

Broader redshift range than SDSS SN

- Higher S/N in red passbands than SNLS
- Add NIR from VISTA VIDEO survey
- Redshifts from spectroscopic followup, SN photo-zs and galaxy photo-zs

DARK ENERGY SURVEY

Four Probes of Dark Energy Working together

- Galaxy Clusters
 - ~100,000 clusters to z>1
 - Sensitive to growth of structure and geometry
- Weak Lensing
 - Shape measurements of 300 million galaxies
 - Sensitive to growth of structure and geometry

Baryon Acoustic Oscillations

- 300 million galaxies to z = 1 and beyond
- Sensitive to geometry

Supernovae

- 30 sq deg time-domain survey
- ~4000 well-sampled SNe Ia to z ~1 (+ 8000 okay ones)
- Sensitive to geometry

DES survey area encompasses South Pole Telescope SZE Survey \sim 100,000 optical clusters to \sim 1: \sim 1,000 with SPT measurements

Synergy with SPT

----SZ (SPT)

----OPT (DES)

Cross. cal. using only SZ ∩ OPT

Full cross-calibration

SZ+OPT over the same patch of sky = 2x better than if in different parts of the sky (Cunha 2009)

Cunha (2009)

VISTA Hemisphere Survey

120 sec JHK exposures

VHS

.....

н

Κ

VISTA 4.1 m primary mirror I.5deg field of view 16 2kx2k HgCdTe

380 nights over 5 yrs 120 sec JHK exposures **Richard McMahon, Pl**

VHS limiting magnitudes	
[AB system; 5 σ]	deg ²

VHS-DES 5000 21.9 21.2 20.8 20.2

Υ

DES collaborates with VHS: DES acquires Y imaging, VHS shares JHK data

Supernovae – early results

DARK ENERGY SURVEY

- Spectroscopic confirmation of the first supernovae with AAT.
- Ongoing spectroscopic observation of many more at AAT, HET, Keck and SALT.

Spectra taken by C. Lidman, R. Sharp, and S. Uddin

Supernovae – early results

DARK ENERGY SURVEY

- 5 Type Ia and 2 Type II already spectroscopically confirmed.
- 500 good candidates scheduled for spectroscopic follow-up next season.

Clusters – Early results

El Gordo Cluster riz image z=0.87

Clusters – early results

• All new discoveries in cluster fields

Weak Lensing – early results

DARK ENERGY SURVEY

Map courtesy of P. Melchior (OSU)

Quote from a non-DES user during community time: This is a shockingly awesome "shared risk" instrument.

Already mature enough to do excellent science, and a joy to use, DECam is a superb achievement. I have to congratulate everybody at CTIO, FermiLab, and everyone else who contributed.

