

ATLAS searches for vector-like quarks in single lepton final states, and the global search status

DPF 2013 Aug 15nd, 2013

Mark Cooke

(LBNL)

on behalf of the ATLAS collaboration

What are vector-like quarks?

- SM quarks are chiral : the left-handed components transform as doublets under the weak-isospin gauge group, SU(2), while the right-handed components transform as singlets.
- A gauge invariant mass term for a chiral quark must originate from a Yukawa interaction with a scalar doublet, φ.

 $y_q \bar{Q}_L \phi q_R \xrightarrow{\rm ewsb} m_q \bar{q}_L q_R$

The observed rate of Higgs production severely constrains the existence of new chiral quarks.

- The left- and right-handed components of vector-like quarks (VLQs) transform the same way under SU(2), be that as singlets, doublets, or even triplets.
- This allows for a gauge invariant mass term independent of the Higgs and of some unspecified BSM origin.

Figure 1. One-loop Higgs mass renormalization in a model with a fermionic top partner, such as the Littlest Higgs. arXiv:1205.0013 [hep-ph]

 T_L , T_R $\begin{pmatrix} T_L \\ B_L \end{pmatrix}, \begin{pmatrix} T_R \\ B_R \end{pmatrix}$

 $M\bar{Q}Q$

Vector-like quarks appear in many BSM theories, particularly those with strong EWSB.

A vector-like top can also stabilize the Higgs mass divergence, much like the stop in SUSY.

Vector-like quark branching ratios

- GIM mechanism is broken, tree level flavor changing neutral currents arise.
- Vector-like multiplets with new exotic charge quarks (+5/3 X, -4/3 Y) are allowed.
- Mixing primarily with 3rd generation generally assumed; natural, but not required.

Heavy quark production at the LHC

- At the LHC, strong pair production is likely the dominant source for heavy quark masses below O(1 TeV).
- The HATHOR approx NNLO prediction is used, and is independent of the EW charges of the new quark.
- Uncertainties from scale choice and PDFs range from 10-20% over the 400 – 800 GeV mass range.

Searches for a vector-like top in single lepton final states

This talk presents preliminary results of two ATLAS searches for a vector-like top quark in single lepton final states using 14.3/fb of 8 TeV data.

- 1. Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton + jets final state (ATLAS-CONF-2013-018, a.k.a. Ht+X)
 - Target events with \geq 6 jets, and \geq 2 b-tagged jets (main signal region has \geq 4 tags)
 - Test the H_T distribution for signal-like excess over background prediction
- Search for pair production of a heavy top-like quark decaying to a high-p_T W boson and a b quark in the lepton + jets final state (ATLAS-CONF-2013-060, a.k.a. Wb+X)
 - Target events with \geq 4 jets, and \geq 1 b-tagged jets
 - Veto events with \geq 6 jets, and \geq 3 b-tagged jets (to remain orthogonal to Ht+X)
 - Require a high-p_T hadronically decaying W boson candidate
 - Reconstruct WbWb system, test heavy top-like quark mass distribution

Higgs + top quark targeted search : strategy

- Exactly one electron or muon candidate, $p_T > 25 \text{ GeV}, |\eta| < 2.5.$
- Missing transverse energy, $ME_T > 20$ GeV.
- Transverse mass, m_T , and ME_T satisfying $ME_T + M_T > 60$ GeV.
- At least 6 jets (anti-kt, R=0.4); at least two b-tagged using a 70% efficient operating point.
- The strategy of the analysis is to test an $\rm H_{T}$ variable defined as:

$$H_T = p_T^{\rm lep} + \not\!\!\!E_T + \sum p_T^{\rm jets}$$

in bins of $N_{tag} = 2$, =3, and ≥ 4 .

Good discrimination between HtHt signal and background, and also robust for mixed signals (HtZb and HtWb).

Higgs + top quark targeted search : data and predictions

- ALPGEN (LO) is used to model the dominant top quark pair background in association with additional light- and heavy-flavor jets.
- The $t\bar{t} + jets$ prediction is improved by performing a simultaneous fit to the H_T distribution in the N_{tag} = 2, 3, \geq 4 bins, allowing the overall scale of + light jets and + heavy-flavor jets top pair processes to deviate from the nominal prediction.

Higgs + top quark targeted search : singlet and doublet limits

Singlet T: BR(Wb, Ht, Zt) ≈ 50%, 25%, 25%

T in a doublet: BR(Wb, Ht, Zt) ≈ 0%, 50%, 50%

Higgs + top quark targeted search : arbitrary branching ratios

Limits also assessed for arbitrary branching ratios at a given mass and presented in the (Wb,Ht) BR plane. [Recall BR(Zt) is determined, as the three sum to unity]

As expected, Ht+X analysis is most sensitive in the Ht corner

First such interpretation presented in the 7 TeV Wb+X publication. [PLB 718 (2013) 1284, arXiv 1210.5468]

W boson + bottom quark targeted search : strategy

 Selection for the leptonic side of event is the same as in the Ht+X search.

At least one explicitly b-tagged jet; treat 2nd highest b-tag weight jet in the event as 2nd b-jet.

• Require a hadronically decaying W boson candidate.

Type 1: Single jet, $p_T > 250$ GeV, jet mass within 60-120 GeV

Type 2: Jet pair, $\Delta R(j,j) < 0.8$, $p_T(j,j) > 200$ GeV, m(j,j) within 60-120 GeV

 tt + jets modeling: 2 NLO generators compared, MC@NLO and Powheg. Data generally bracketed by the two, w/ MC@NLO (default) providing a better description. Largest systematic uncertainty in analysis associated w/ difference.

W boson + bottom quark targeted search : loose selection

- After preselection, $t\bar{t} + jets$ is the dominant background.
- Reduce with requirements on H_T (here w/ using 4 highest p_T jets), and p_T of b-jets.

ATLAS VLQ searches in one lepton final states: M. Cooke (LBNL)

Slide 11

W boson + bottom quark targeted search : tight selection

- After H_T and b-jet p_T requirements, remaining $t\bar{t} + jets$ bkg is boosted.
- W_{lep} even more boosted for signal.
- W bosons and b-jets are closer to each other in background events.

W boson + bottom quark targeted search : reconstructed mass

- Reconstructed heavy quark mass (m_{reco}) built from W_{had} and one of the b-jets.
- Typically two solutions for W_{lep}, and two ways to pair W cands w/ b-jets.
- Among all possibilities, choose comb that minimizes lep and had heavy quark mass diff.

W boson + bottom quark targeted search : chiral and singlet limits

Chiral T: BR(Wb, Ht, Zt) ≈ 100%, 0%, 0%

Singlet T: BR(Wb, Ht, Zt) ≈ 50%, 25%, 25%

W boson + bottom quark targeted search : arbitrary branching ratios

Limits also assessed for arbitrary branching ratios at a given mass and presented in the (Wb,Ht) BR plane. [Recall BR(Zt) is determined, as the three sum to unity]

As expected, Wb+X analysis is most sensitive in the Wb corner

Combination of single lepton results

A preliminary combination of the Ht+X and Wb+X analyses has been performed.

[the two analyses do not overlap, and common sources of sys. uncert. are treated as fully correlated]

Combined limit on a singlet T:

m_T < **670** (675) **GeV**, **obs** (exp)

After combination, the BR(Zt) corner is the least well covered, but ATLAS has additional searches to cover it!

ATLAS VLQ results with single and multiple leptons

Ht+XWb+X• Single lepton + missing E_T • At least 4 jets, one or (many) more b-jets ≥ 6 jetsReco W_{had} ≥ 4 b-tagsReco WbWbTest H_T (all)Test Mass

Zb/t+X ATLAS-CONF-2013-056 see J. Virzi's talk

- OS/SF leptons
- Z candidate
- High p_T(Z)
- ≥ 2 b-jets
- Large H_T(jets)

Test m(Zb)

Same-Sign ATLAS-CONF-2013-051 see X. Lei's talk

- SS leptons
- Missing E_T
- ≥ 2 jets
- ≥ 1 b-jets
- Large H_T(all)
 Count

ATLAS VLQ searches in one lepton final states: M. Cooke (LBNL)

Slide 17

• In the T plane, the Ht+X analysis is particularly powerful in the Ht corner, but also has considerable sensitivity over a good portion of the full plane.

• In the T plane, the SS analysis complements the Ht+X analysis, adding a little more reach at low BR(Ht) for lower masses.

• However, the Zb/t+X provides the best sensitivity at low BR(Ht) in the T plane.

• And Wb+X fills in the remaining uncovered region, the charged-current corner.

• In the B plane, the SS analysis covers well the charged current corner (4 W final state).

• And the Zb/t+X covers well the neutral current side of the B plane.

Conclusions

- Two searches for heavy top-like quarks using 14.3/fb of 8 TeV data were described.
- Both were carried out in the single lepton final state, and are complementary.
- Ht + X targets the neutral-current decay to a top quark and a Higgs boson.
- Wb + X targets the charged-current decay to a bottom quark and a W boson.

Heavy Top Quark Summary

Heavy T quark type	Source	Obs. limit [GeV]	Exp. Limit [GeV]
vector-like singlet T	1-lep comb	670	675
T in vector-like (T,B) doublet	Ht + X	790	745
chiral	Wb +X	740	770

• These 1-lepton results are complemented by dilepton results that also set strong limits on new heavy bottom quarks.

Heavy Bottom Quark Summary

Heavy B quark type	Source	Obs. limit [GeV]	Exp. Limit [GeV]
vector-like singlet B	Zb/t+X	645	635
B in vector-like (T,B) doublet / chiral	SS	720	770
B in vector-like (B,Y) doublet	Zb/t +X	725	720