PROJECT 8: USING RADIO-FREQUENCY TECHNIQUES TO MEASURE NEUTRINO MASS

Noah Oblath MIT

DPF Meeting 2013 UC Santa Cruz August 15, 2013

Tritium Beta Decay

... from which we detect the electron

PROJECT 83

Beta decay allows a precise measurement of the absolute neutrino mass scale

Energy Spectrum

The shape is modified by the neutrino mass

C.P.

KATRIN

Endpoint of the Tritium β -decay Spectrum

KATRIN

Endpoint of the Tritium β -decay Spectrum

6

Beyond KATRIN

Limiting Factors

- Flux: Cannot increase source column density; can only scale up the area
- Resolution: Cannot reasonably scale up the size of the spectrometer

$$\Delta E = \frac{B_{\min}E}{B_{\max}}$$

A new technique is necessary to improve on the neutrino mass sensitivity

Enclosed volume

PIEOJA CAP

- Enclosed volume
- Fill with tritium gas

PROJECT 83

- Enclosed volume
- Fill with tritium gas
- Add a magnetic field

PROJECT B

- Enclosed volume
- Fill with tritium gas
- Add a magnetic field

Decay electrons spiral around field lines

ROJACT

- Enclosed volume
- Fill with tritium gas
- Add a magnetic field

Decay electrons spiral around field lines

EOJKOW SI

Add antennas to detect the cyclotron radiation

Cyclotron Radiation

 The frequency of the emitted radiation (ω) depends on the relativistic boost (γ and β dependence), and is independent of the pitch angle of the electron (θ)

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e} \qquad P_{\text{tot}} = \frac{1}{4\pi\epsilon_0} \frac{2q^2\omega_c^2}{3c} \frac{\beta_{\perp}^2}{1 - \beta^2}$$

• The radiation emitted can be collected to measure the electron energy in a non-destructive manner

Frequency Spectrum

• Low energy electrons dominate at higher frequencies

O TROP

 Rare, high energy electrons give a clean signature at the endpoint

Demonstrating the Technique

- A prototype is being built at UW
- Superconducting solenoid
- Waveguide antenna
- Questions to answer
 - I. Can we detect signals from electrons?
 - 2. What is the resolution of the technique?
- Use a ^{83m}Kr source
 - I8 and 30 keV conversion electrons

Antenna Insert

Aluminum Rectangular Waveguide

Cryogenic Amplifier

Trapping Magnet

Electron Tracking Simulations

Performed with the Kassiopeia simulation package

Electron Tracking Simulations

Performed with the Kassiopeia simulation package

Other Details

- Magnetic field strength: I T
- Cyclotron frequency: 27 GHz
- Insert cooled to 100K
- Trapping volume: ~1 mm³
- Bandwidth: 100 MHz

Taking Data

DROJRCT S

- Untriggered
- Digitize and write to disk
 - Current system: 8-bit Signatec @ 200 MHz
 - Upgrade: 8-bit digitizer attached to a ROACH FPGA processing board
- January dataset
 - 7.5 TB on disk
- New run planned for September

Data

Time

20

Data

PROJECT SS

Power Spectrum

PROJECT 85

Cartoon Signal

PROJECT SS

Color = Power Detected

Color = Power Detected

PROJECT B

Color = Power Detected

PROJECT SB

Color = Power Detected

Color = Power Detected

Color = Power Detected

Candidate (simulated)

PROJECT SB

32

Candidate

Current Status

 Analysis is underway of our existing data

- Next data run: September
 - Magnetic field measurement
 - Lower noise temperature

Can we improve on the sensitivity to neutrino mass?

ROJECT

- Larger volume for higher statistics
- Systematic uncertainties ultimately limited by the T₂ final state distribution
- Atomic tritium would bypass this limit
- R&D is beginning on a gaseous atomic tritium source

Projected Sensitivities

Sensitivities for different gas densities (number per cm³)

PIEOJECT SZ

Current effort to detect electrons

- Analyzing existing data
- Further data taking planned for September

Moving to a tritium measurement

- Scaling up volume
- Atomic tritium source

PROJECT 8

Caltech R. Patterson

Karlsruhe Institute of Technology

T. Thuemmler

Massachusetts Institute of Technology & MIT Haystack Observatories J.A. Formaggio, N.S. Oblath, S. Cisneros, D. Furse, J. Barrett, P. Mohanmurthy, D. Rysewyk — A. Rogers, S. Doeleman A LISEL LOS

National Radio Astronomy Observatory R. Bradley

Pacific Northwest National Laboratory B.Vandevender, D.Asner, M. Jones

University of California at Santa Barbara B. Monreal, M. Ghilea, M. Bahr, B. LaRoque

University of Washington R.G.H. Robertson, L. Rosenberg, M. Miller, G. Rybka, J. Kofron, L. McBride

