Expected Sensitivities from the v_{μ} **Disappearance Analysis Using the NOvA Detector**

Michael Baird For the NOvA Collaboration Indiana University DPF 2013

NOvA Far Detector MINOS Far Detecto Ontario initia -Milwaukee Michigan Fermilab Chicago

Motivation for Measuring θ_{23}

It tells us the relative proportions of v_{μ} and v_{τ} in each of the mass states.

Of the three mixing angles, it is the one currently known to the least precision.

If θ_{23} is maximal, it may hint at a new symmetry and expose previously unknown underlying structure.

Current Range: $38^\circ < \theta_{23} < 52^\circ$

By combining our v_{μ} disappearance and our v_e appearance measurements of θ_{23} we can improve the science reach of NOvA.

How NOvA is Sensitive to θ_{23}

Basic disappearance probability:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\Theta_{23})\sin^2\left(\frac{1.27\Delta m_{32}^2 L}{E}\right)$$

With a baseline of L = 810 km, and a neutrino energy spectrum peaked at E = 2 GeV, NOvA is optimal for v_{μ} disappearance.

Goals of our v_{μ} CC Analysis:

- Deal with the fact that our far detector is on the surface (rejecting cosmic rays.)
- 2. Use every v_{μ} CC possible (including uncontained events) by identifying events with well reconstructed muon tracks.
- 3. Isolate events with high energy resolution (contained v_{μ} CC quasi-elastic events) to maximize our sensitivity.

500 μ s of simulated cosmic rays overlaid on a ν_{μ} CC event.

- We expect roughly 1 cosmic ray per 10 μs beam spill window. At one beam spill per 1.3 seconds, this leads to ~66,000 cosmics per day (in time with the beam).
- With ~2-3 ν_μ CC events per day, rejecting 99.999% of the cosmics will still leave us with 1 cosmic per day (we must do better than this...)

- By rejecting clusters of hits that occur outside our beam spill window, we can isolate potential neutrino events.
- For our contained sample, we can apply a series of cuts and a simple cosmic PID, and reject > 99.9999% of cosmics while maintaining > 95% of our signal events.
- Cosmic rejection for our uncontained events is still under development.

Event Types in NOvA: v_µ CC QE

- QE events are identified by a nice long muon track with at most one other proton-like track.
- The simplicity of these events will provide **good energy resolution**.
- To improve our sensitivity, we want to try to isolate as many of these as we can.

Event Types in NOvA: v_µ CC non-QE

Non-QE: RES v_{μ} + nuc. $\rightarrow \mu$ + nuc. + X

Non-QE: DIS v_{μ} + nuc. $\rightarrow \mu$ + c_1 nuc. + $c_2\pi$

- Non-QE events are still **identified with clear muon track**.
- The energy resolution for this sample is lower (due to missing energy from neutral particles) but the statistics will be higher.

Event Types in NOvA: uncontained v_µ CC

- Uncontained events can still be labeled as ν_μ CC given an identifiable muon track. We make no attempt to separate the uncontained into QE and non-QE.
- These events will have the lowest energy resolution (due to escaping energy) but they can still contribute to our overall sensitivity.

Background Events: NC

• NC events can be rejected from the v_{μ} CC analysis due to the **absence of a** reconstructed muon track.

Removing NC from the v_u CC Event Sample NOvA preliminary v_u CC PID Currently, we select events with -CCa PID > 0.725 as v_{μ} CC events. 300 Events / 18 x 10²⁰ POT -NCEfficiency = 88.3%Purity = 94.3% 93.1% of NC events are rejected selected Note: $18e20 \text{ POT} \approx 3 \text{ years}$ assuming ~65% beam up time. 0 0.2 0.4 0.6 0.8 PID

- We use a multivariate analysis based on quantities such as dE/dx and track length for the **most muon like track**, to **generate a** v_{μ} CC PID.
- This allows us to **separate out NC events** from our v_{μ} CC sample.

QE/non-QE Event Separation

- For one track events, we select events with a PID > 0.3 as QE.
- Efficiency = 90.5%
- Purity = 82.3%

- In the contained sample, we will **distinguish QE from non-QE events** in order to improve our sensitivity.
- For this we use another **multivariate analysis to generate a QE PID** for events with one or two tracks based on things such as the amount of energy NOT on the main track and the difference between two different energy estimators.

QE/non-QE Event Separation

- For two track events, we select events with a PID > 0.45 as QE.
- Efficiency = 81.3%
- Purity = 50.1%

1 & 2 track samples combined:

- Total QE Efficiency = 87.9%
- Total QE Purity = 70.6%

• For the 2 track sample, we use the same PID used for the 1 track samples but we apply a different cut.

Energy Spectra by Event Sample

True Neutrino Energy Spectra:

Reconstructed Neutrino Energy Spectra:

NOvA V μ Sensitivities - M.Baird

Combined Sensitivity Example NOvA Preliminary

This plot does not include any systematic errors (we will be limited primarily by our statistics.)

Combined Sensitivity Example NOvA Preliminary

This plot does not include any systematic errors (we will be limited primarily by our statistics.)

NOvA Full Reach Sensitivities

- We expect to be able to surpass the current measurement of $\theta^{}_{23}$ after 3+3 years of running.
- If sin² 2θ₂₃ = 1.00, we expect to surpass the current best measurement after only 1+1 years of running.
- If sin² 2θ₂₃ = 0.95, we will be able to exclude (at the 90% CL) maximal θ₂₃ after 1+1 years of running.

Conclusions:

- A precision measurement of θ_{23} is important and NOvA is getting ready to take data for our v_{μ} disappearance measurements.
- We have a good v_{μ} CC analysis structure in place including systems for background rejection of NC events and cosmic rays and isolation of v_{μ} CC QE events for increased sensitivity.
- We anticipate being able to surpass the current measurements for $\sin^2 2\theta_{23}$ and Δm^2_{23} within a few years!

Special thanks to UCSC for hosting DPF 2013!

Your campus is wonderful!

We can detect neutrinos but so far, we can not detect these...

NOVA VI Sensitivities - M. Dallu

Backups

Expected Number of Events:

All neutrino energies:		Expected total numbers for 1 year with no cuts: 621		
numuCC event type	3 yrs nu-mode sin^2(2*th) = 1.0	3 yrs nu-mode sin^2(2*th) = .95	1 yr nu-mode sin^2(2*th) = 1.0	1 yr nu-mode sin^2(2*th) = .95
Cont. QE	93.5	109	31.2	36.3
Cont. non-QE	435	460	145	153
Uncontained	937	952	312	317

Neutrinos with 0 < E < 5 GeV:

Expected total numbers for 1 year with no cuts: 194

numuCC event type	3 yrs nu-mode sin^2(2*th) = 1.0	3 yrs nu-mode sin^2(2*th) = .95	1 yr nu-mode sin^2(2*th) = 1.0	1 yr nu-mode sin^2(2*th) = .95
Cont. QE	85	101	28.3	33.7
Cont. non-QE	192	216	64	72
Uncontained	253	267	84	89

All numbers here are assuming a 700 kW beam and a 14 kTon detector with 65% beam up time. NOvA Vµ Sensitivities - M.Baird 22

PID

Basic v_{μ} CC Cuts:

Cut definitions:

- Containment (in cm): -745 < X < 745 && -745 < Y < 720 && 12 < Z < 5950 && mincell > 10
- **Mincell**: the minimum of cosrej.kalfwdcell, cosrej.kalbakcell, cosrej.cosfwdcell, and cosrej.cosbakcell
- Quality: number of hits in slice > 20 && number of continuous planes in slice
 > 4 && cosrej.nhitkal > 10 && cosrej.anglebest > 0.3 && remid > 0.725
- QE events: (# of tracks == 1 && qepid > 0.3) || (# of tracks == 2 && qepid > 0.45)

numuCC event samples:

- **Contained QE events**: containment &&quality && QE && cosrej.cospid > 0.2
- Contained nonQE events: containment && quality && !QE && cosrej.cospid > 0.2
- Uncontained events: !containment && quality && cosrej.uncontcospid > 0.99999999

NOvA Preliminary

Major handles for cosmic rejection include:

Angle of muon w.r.t. beam

Projected number of cells from muon track start/end, along track direction, to detector edge

Vertical direction of muon track

These are combined into a cosmic PID for contained cosmic rejection

After applying some basic quality cuts, for every 1 contained numuCC event, we expect ~3200 cosmic ray events in the beam trigger window. Removal is critical!

% remaining after cut	Cosmics	v MC
precuts	100% (5.5 x 10 ⁶ events)	100% (7.1 x 10 ⁵ events)
contained	1%	52%
Cosmic cuts	0% (all removed)	50% (97% of contained)

After cosmic cuts, we expect > 100 neutrinos for every 1 cosmic in the contained sample.

NOvA Preliminary

To remove uncontained cosmics, we use the same handles and more:

muon scattering

muon vs hadronic energy fraction

muon track direction from hit timings

activity near track ends

plus other variables...

These are combined in a BDT as the uncontained cosmic PID

After some basic quality cuts, we will have 1 numuCC event for every 80,000 cosmics in the uncontained sample. Even removing 99.99% of cosmics isn't enough. Still working to improve!

% remaining after cut	Cosmics	νΜΟ
precuts	100% (5.5 x 10 ⁶ events)	100% (7.1 x 10⁵ events)
uncontained	99%	48%
Cosmic cuts	0.007% remaining	43% (90% of uncontained)

NOvA Vµ Sensitivities - M.Baird

• Applying a clustering algorithm, we can group all of the hits together that belong to the same "source" (i.e. – a cosmic ray or a neutrino event.)

NOvA Vµ Sensitivities - M.Baird

• Applying a clustering algorithm, we can group all of the hits together that belong to the same "source" (i.e. – a cosmic ray or a neutrino event.)

NOvA Vµ Sensitivities - M.Baird

• Applying a clustering algorithm, we can group all of the hits together that belong to the same "source" (i.e. – a cosmic ray or a neutrino event.)

NOvA Vµ Sensitivities - M.Baird

Perspective on the NOvA Far Detector

Far detector construction is progressing...

Perspective on the NOvA Near Detector

$v_{\mu} \rightarrow v_{e}$ Oscillation Probability

$$P\begin{pmatrix} (-) \\ \nu_{\mu} \rightarrow \dot{\nu_{e}} \end{pmatrix} \approx P_{atm} + P_{sol} + 2\sqrt{P_{atm}P_{sol}} [\cos(\Delta_{32})\cos(\delta) \mp \sin(\Delta_{32})\sin(\delta)]$$

$$P_{atm} \equiv \sin^{2}(\Theta_{23})\sin^{2}(2\Theta_{13}) \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} (\Delta_{31})^{2} \qquad "-" = neutrinos$$

$$"+" = anti - neutrinos$$

$$a \equiv G_{F}N_{e}/\sqrt{2}$$

$$P_{sol} \equiv \cos^{2}(\Theta_{23})\sin^{2}(2\Theta_{12}) \frac{\sin^{2}(\mp aL)}{(\mp aL)^{2}} (\Delta_{21})^{2} \qquad N_{e} = electron \ density \ in \ Earth$$

- This contains **CP violation**.
- Since the Earth is made of electrons, v_e will be affected in a way that that won't occur for the v_{μ} or the v_{τ} . This is the matter effect. (For L = 810 km, aL \approx 0.23.)
- The dominant term above is proportional to $sin^2(\Theta_{23})$ meaning it is possible to determine if $\Theta_{23} > 45^\circ$ or $\Theta_{23} < 45^\circ$ ("resolving the octant.")

The NOvA Detectors

32-pixel APD

Fiber pairs from 32 cells

- 14-kton Far Detector (~3x MINOS).
- 65% active detector.
- 344,064 detector cells read by APDs.
- 0.3 kton Near Detector 18,000 cells/channels.
- Each plane just 0.15 X0. Great for e vs π⁰.

Consist of plastic (PVC) extrusions filled with liquid-scintillator, with WLS fibers connected to APDs. Assembled in alternating layers of vertical and horizontal extrusions. Waveshifting Fiber Loop

3.9 cm 6.0 cm NOvA basic cell

FHC ν_{μ} CC

FD

	[1,3]GeV	[0,120]Gev
Total	63.1	101.5
Numu	62.1	97.6
Anti-Numu	1.0	3.9

[0,3]GeV: anumu/numu = 1.6% [0,3]GeV: anumu/numu = 1.7%

ND

×106	[1,3]GeV	[0,120]Gev
Total	53.5	93.0
Numu	52.6	89.5
Anti-Numu	0.9	3.5

RHC ν_{μ} CC

FD

	[1,3]GeV	[0,120]Gev
Total	24.9	45.4
Numu	2.4	13.2
Anti-Numu	22.5	32.2

[0,3]GeV: numu/anumu = 10%

ND

×10 ⁶	[1,3]GeV	[0,120]Gev
Total	21.2	41.2
Numu	2.1	11.9
Anti-Numu	19.1	29.3

[0,3]GeV: numu/anumu = 10%