Status and Results from EXO-200

Jason Chaves Stanford University DPF 2013

Neutrinoless Double Beta Decay

Two neutrino double beta decay

 $\begin{bmatrix} 9 & \frac{136}{53} \\ -7 & & \\ -6 & \\ -5 & & \\ -4 & & \\ -3 & & \frac{136}{54} Xe^{-\frac{136}{55} Cs} \\ -2 & & & \\ (MeV) & & \frac{136}{56} Ba \end{bmatrix} = A = 136$ $\beta^{+} \sqrt{\frac{136}{59} Pr}$

Neutrinoless double beta decay

2vββ: 2nd order process, only observable when single beta decay is highly suppressed. EXO-200 first to see in ¹³⁶Xe

<u>Ονββ:</u> SM-forbidden process

Possible New Physics

Observation of 0vββ would imply new physics concerning:

- Majorana nature of neutrinos
- Neutrino mass scale
- Lepton number conservation

Advantages of ¹³⁶Xe

Xenon isotopic enrichment is easier. Xenon is a gas & ¹³⁶Xe is the heaviest isotope.

- Xenon is "reusable". Can be repurified & recycled into new detector.
- Large monolithic detector. LXe is self shielding, rejection of Compton scatterings.
- Minimal cosmogenic activation. No long lived radioactive isotopes of Xe.
- Energy resolution in LXe can be improved. Scintillation light/ionization correlation.

... admits a novel coincidence technique. Background reduction by barium daughter tagging.

Goals of EXO-200

- Use Time-Projection Chamber (TPC) detector, filled with 200 kg LXe, 80.6% enriched
- Observe $2v\beta\beta$ in ¹³⁶Xe
- Probe majorana mass range of 100-200 meV
- Demonstrate feasibility of a ton-scale experiment

The EXO Collaboration

University of Alabama, Tuscaloosa AL, USA - D. Auty, T. Didberidze, M. Hughes, A. Piepke

University of Bern, Switzerland - M. Auger, S. Delaquis, D. Franco, G. Giroux, R. Gornea, T. Tolba, J-L. Vuilleumier, M. Weber

California Institute of Technology, Pasadena CA, USA - P. Vogel

Carleton University, Ottawa ON, Canada - M. Dunford, K. Graham, C. Hargrove, R. Killick, T. Koffas, F. Leonard, C. Licciardi, M.P. Rozo, D. Sinclair, V. Strickland

Colorado State University, Fort Collins CO, USA - C. Benitez-Medina, C. Chambers, A. Craycraft, W. Fairbank, Jr., N. Kaufhold, T. Walton

Drexel University, Philadelphia PA, USA - M.J. Dolinski, M.J. Jewell, Y.H. Lin, E. Smith

University of Illinois, Urbana-Champaign IL, USA - D. Beck, J. Walton, M. Tarka, L. Yang

IHEP Beijing, People's Republic of China - G. Cao, X. Jiang, Y. Zhao

Indiana University, Bloomington IN, USA - J. Albert, S. Daugherty, T. Johnson, L.J. Kaufman

University of California, Irvine, Irvine CA, USA - M. Moe

ITEP Moscow, Russia - D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich

Laurentian University, Sudbury ON, Canada - E. Beauchamp, D. Chauhan, B. Cleveland, J. Farine, B. Mong, U. Wichoski

University of Maryland, College Park MD, USA - C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen

University of Massachusetts, Amherst MA, USA - T. Daniels, S. Johnston, K. Kumar, M. Lodato, C. Mackeen, K. Malone, A. Pocar, J.D. Wright

University of Seoul, South Korea - D. Leonard

SLAC National Accelerator Laboratory, Menlo Park CA, USA - M. Breidenbach, R. Conley, K. Fouts, R. Herbst, S. Herrin, A. Johnson, R. MacLellan, K. Nishimura, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen

Stanford University, Stanford CA, USA - P.S. Barbeau, J. Bonatt, T. Brunner, J. Chaves, J. Davis, R. DeVoe, D. Fudenberg, G. Gratta, S.Kravitz, D. Moore, I. Ostrovskiy, A. Rivas, A. Schubert, D. Tosi, K. Twelker, L. Wen

Technical University of Munich, Garching, Germany - W. Feldmeier, P. Fierlinger, M. Marino

EXO-200 Detector

- Two TPCs with common cathode in middle
- APD planes observe prompt scintillation for drift time measurement.
- V-position given by induction signal on shielding grid.
- U-position and energy given by charge collection grid.

Anti-Correlation (Ioniz. vs Scint.)

EXO-200 Installation Site: WIPP

Cleanrooms at WIPP drift

- EXO-200 is installed at WIPP (Waste Isolation Pilot Plant), in Carlsbad, NM
- 1600 mwe flat overburden (2150 feet, 650 m)
- U.S. DOE salt mine for radioactive waste storage
- Salt rock low activity relative to hard-rock mine

EXO-200 Running

	Run 1 (2vββ Discovery)	Run 2a (0vββ limit)	Run 2a (this analysis)
Period	May 21, 11 – Jul 9, 11	Sep 22, 11 – Apr 15, 12	Sep 22, 11 – Apr 15, 12
Live Time	752.7 hr	2896.6 hr	3062.4 hr
Exposure	3.2 kg-yr	32.5 kg-yr	23.14 kg-yr
Publ.	PRL 107 (2011) 212501	PRL 109 (2012) 032505	arXiv:1306.6106 (Jun 2013)

- Review previous two results
- Improvements made for this 2013 analysis
- Precision 2vββ measurement

First observation of the 2νββ decay in ¹³⁶Xe

With first 31 live-days of data:

 $T_{1/2}$ = (2.11 \pm 0.04 stat \pm 0.21 sys) \cdot 10²¹ yr

[Ackerman et al Phys Rev Lett 107 (2011) 212501]

The slowest physics process ever directly observed in nature

Later confirmed by KamLAND-Zen

T_{1/2}=(2.38 ± 0.02stat ± 0.14sys)·10²¹ yr [A.Gando et al. Phys Rev C 85 (2012) 045504]

Interpret as lepton number violating process with effective Marojana mass $\langle m_{\beta\beta} \rangle$:

$$\left(T_{1/2}^{0\nu\beta\beta}\right)^{-1} = G^{0\nu} \left| M_{nucl} \right|^2 \langle m_{\beta\beta} \rangle^2$$

 $T_{1/2}^{0\nu\beta\beta} > 1.6 \cdot 10^{25} \text{ yr}$

(m_{ββ}) < 140–380 meV (90% C.L.)</pre>

Phys.Rev.Lett 109 (2012) 032505 (arXiv:1205.5608)

KamLAND-ZEN Phys.Rev.Lett. 110 (2013) 062502 (arXiv:1211.3863)

<u>Background counts in \pm 1,2 σ ROI</u>

	Expected events from fit			
	±1σ		±2	2 σ
222Rn in cryostat air-gap	1.9	±0.2	2.9	± 0.3
²³⁸ U in LXe Vessel	0.9	±0.2	1.3	± 0.3
²³² Th in LXe Vessel	0.9	±0.1	2.9	± 0.3
²¹⁴ Bi on Cathode	0.2	±0.01	0.3	±0.0 2
All Others	~0.2		~0.2	
Total	4.1	±0.3	7.5	± 0.5
Observed	1		5	
Background index (kg ⁻¹ yr ⁻¹ keV ⁻¹)	1.5.10	⁻³ ± 0.1	1.4.10	³ ± 0.1

EXO-200 goal:

40 cnts/2y in $\pm 2\sigma$ ROI, 140 kg LXe

In this data 120 days, 98.5 kg: 4.6

Expected from the fit: 7.5 Observed: 5

Background within expectation

Since then

- Improved event reconstruction
- Improved and more detailed(geometry)
 Monte Carlo simulations

- More precise detector response calibration
- And other improvements

Induction Signals

- Identify Induction Signals on Collection Wires
- Mistakenly reconstructing as collection leads
 to SS/MS misclassification
- 77% induction rejection, with 99.9% collection efficiency

Fit to Induction and Collection Signal Models

Corrections

Optimal rotation angle measured weekly New iterative approach developed to extract energy resolution curve Time-averaged energy resolution used for final LB fit

Source Agreement

Improved MC and event reconstruction

- Source rate agreement to within 4% (9.4% in 0vββ analysis)
- Excellent spectral shape agreement
- Sufficient SS/MS agreement

Fiducial Volume

Previous analysis:79.4 kg of 136XeThis analysis:66.2 kg of 136Xe

2vββ analysis is systematics-dominated

Chose smaller fiducial volume where detector response is better understood Decrease related systematic uncertainties

Fiducial Volume Cut

Hexagonal cut in U,V based on:

- 2vββ rate vs apothem
- Z cut based on:
- Field non-uniformity near cathode
- Grid-efficiency correction due to V-Wire plane

Standoff Fits

Previously: simultaneously fit SS and MS event datasets using energy PDFs

Now: added Standoff Distance as an additional fit dimension (PDFs are 2D, energy and standoff)

Energy-only LB fit returns 2.4% less 2vββ counts than reported result

SD improves background estimates (bkgd contribution on total error: 1.2% -> 0.83%)

Improved Measurement of $T_{1/2}^{2\nu\beta\beta}$

 $T_{1/2}^{2\nu\beta\beta} = (2.172 \pm 0.017(stat) \pm 0.060(sys)) \cdot 10^{21}$ years Total relative uncertainty: 2.85%

Improved analysis of $T_{1/2}^{2\nu\beta\beta}$ submitted to PRC (arxiv:1306.6106)

This result is the most precisely measured halflife of any 2vββ decay process to date

Nuclide	$T_{1/2}^{2\nu\beta\beta} \pm stat \pm sys$	rel. uncert.	$G^{2\nu}$	$M^{2\nu}$	rel. uncert.	Experiment (year)
	[y]	[%]	$[10^{-21} \text{ y}^{-1}]$	$[{\rm MeV^{-1}}]$	[%]	
136 Xe	$2.172 \pm 0.017 \pm 0.060 \cdot 10^{21}$	± 2.85	1433	0.0217	±1.4	EXO-200 (this work)
76 Ge	$1.84^{+0.09+0.11}_{-0.08-0.06} \cdot 10^{21}$	$+7.7 \\ -5.4$	48.17	0.129	$^{+3.9}_{-2.8}$	GERDA [39] (2013)
$^{130}\mathrm{Te}$	$7.0\pm 0.9\pm 1.1\cdot 10^{20}$	± 20.3	1529	0.0371	± 10.2	NEMO-3 [40] (2011)
116 Cd	$2.8\pm 0.1\pm 0.3\cdot 10^{19}$	± 11.3	2764	0.138	± 5.7	NEMO-3 [41] (2010)
^{48}Ca	$4.4^{+0.5}_{-0.4} \pm 0.4 \cdot 10^{19}$	$^{+14.6}_{-12.9}$	15550	0.0464	$^{+7.3}_{-6.4}$	NEMO-3 [41] (2010)
$^{96}\mathrm{Zr}$	$2.35\pm0.14\pm0.16\cdot10^{19}$	± 9.1	6816	0.0959	± 4.5	NEMO-3 [42](2010)
$^{150}\mathrm{Nd}$	$9.11^{+0.25}_{-0.22} \pm 0.63 \cdot 10^{18}$	$^{+7.4}_{-7.3}$	36430	0.0666	$^{+3.7}_{-3.7}$	NEMO-3 [43](2009)
$^{100}\mathrm{Mo}$	$7.11 \pm 0.02 \pm 0.54 \cdot 10^{18}$	± 7.6	3308	0.250	± 3.8	NEMO-3 [44](2005)
82 Se	$9.6 \pm 0.3 \pm 1.0 \cdot 10^{19}$	± 10.9	1596	0.0980	± 5.4	NEMO-3 [44](2005)

Looking Forward

- For the future 0vββ result, will have ~3x more data
- Further electronics upgrades
- Deradonator to remove ²²²Rn from air around cryostat

R&D for nEXO, proposed ton-scale successor of EXO-200